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ABSTRACT

Reputation is a primary mechanism for trust management in de-
centralized systems. Many reputation-based trust functions have
been proposed in the literature. However, picking the right trust
function for a given decentralized system is a non-trivial task. One
has to consider and balance a variety of factors, including compu-
tation and communication costs, scalability and resilience to ma-
nipulations by attackers. Although the former two are relatively
easy to evaluate, the evaluation of resilience of trust functions is
challenging. Most existing work bases evaluation on static attack
models, which is unrealistic as it fails to reflect the adaptive nature
of adversaries (who are often real human users rather than simple
computing agents).

In this paper, we highlight the importance of the modeling of
adaptive attackers when evaluating reputation-based trust functions,
and propose an adaptive framework—called COMPARS—for the
evaluation of resilience of reputation systems. Given the complex-
ity of reputation systems, it is often difficult, if not impossible,
to exactly derive the optimal strategy of an attacker. Therefore,
COMPARS takes a practical approach that attempts to capture the
reasoning process of an attacker as it decides its next action in a
reputation system. Specifically, given a trust function and an attack
goal, COMPARS generates an attack tree to estimate the possible
outcomes of an attacker’s action sequences up to certain points in
the future. Through attack trees, COMPARS simulates the optimal
attack strategy for a specific reputation function f, which will be
used to evaluate the resilience of f. By doing so, COMPARS al-
lows one to conduct a fair and consistent comparison of different
reputation functions.
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1. INTRODUCTION

Large-scale decentralized systems, such as peer-to-peer systems,
online auction communities and ad hoc mobile networks, often in-
volve transactions between strangers from different security do-
mains with no pre-existing knowledge of each other. Although
such systems offer great benefits in terms of service diversity, flex-
ibility and scalability, they also give malicious parties the oppor-
tunity to cheat during transactions without being identified or pun-
ished [28, 31]. Inspired by social interactions between human be-
ings, reputation mechanisms have emerged as a major technique
for trust establishment in decentralized systems. In a reputation
system, upon completion of a transaction, the involved parties is-
sue feedback to evaluate one another’s service or behavior during
the transaction. Before a new transaction starts, one may first as-
sess a party’s trustworthiness based on the feedback on its previous
transactions. This process can be viewed as the application of a
trust function, which conceptually takes as input the feedback for a
party’s past transactions (or that of other parties, when necessary),
and outputs a trust value to indicate its trustworthiness.

Many trust functions have been proposed in the literature (e.g.,
[1, 3, 12, 13, 29, 30, 33]). However, when building a decentral-
ized system, it is non-trivial to pick the right trust function. One
has to consider and balance a variety of factors, including compu-
tation and communication costs, scalability and resilience to ma-
nipulation. While many other factors are relatively straightforward
to evaluate, the evaluation of resilience can be challenging. Re-
silience refers to how accurately a computed trust value reflects a
party’s true trustworthiness in the presence of malicious manipula-
tion. Malicious manipulation includes selectively and strategically
providing good or bad transactions, or issuing dishonest positive or
negative feedback. We emphasize that the evaluation of resilience
has to consider adaptive attackers who are aware of how a trust
function works and adapt their behavior accordingly to maximize
their gain in a system.

Unfortunately, though a large amount of work has been done on
the design of trust functions, very few studies are devoted to sys-
tematic evaluation of their resilience [11, 14, 20]. Most existing
efforts focus on performance evaluation [9, 28], while efforts on
resilience evaluation are rather limited and are often built on the
assumption that attackers are likely to behave within a fixed set of
strategies that can be described by static models [3, 9, 14, 20, 26,
28]. This assumption is unrealistic, as it does not consider the adap-
tive nature of adversaries. Furthermore, evaluations based on fixed
strategies do not offer a fair comparison of different trust functions.
A particular trust function may be resilient to one type of attack yet
vulnerable to another. Hence, comparing two trust functions using



a fixed attack strategy may only offer a biased and incomplete view
of their strength against manipulation. To be fair, one has to com-
pare the worst cases of two trust functions. That is, it is necessary
to compare their resilience against the most effective attacks, which
are likely to be different for different trust functions.

In this paper, we propose an evaluation platform for the COM-
PArison of Reputation Systems (COMPARS) that specifically takes
into consideration the adaptiveness of adversaries. Essentially, an
adversary tries to game a reputation system to achieve maximum
profits, while normal users behave more or less consistently. There-
fore, from an attacker’s point of view, a reputation system sets up
a single-player game. The trust function along with the behavior
of normal users forms the environment and rules of the game (i.e.,
how the system will evolve when certain actions are taken), and the
goal of the attacker is to carefully choose its actions to maximize
certain profit measures (e.g., to meet a profit goal in the shortest
time, or obtain the maximum profit in a given period of time).

Theoretically, given a trust function and a model of normal user
behavior, there exists an optimal strategy for an attacker to game
the system (i.e., the most effective attack). However, in practice,
it is often hard to derive such optimal strategies. A system’s state
is determined by the behavior of a large number of users. Further,
although normal users follow some behavior models more or less
consistently, they are non-deterministic in nature (e.g., even if an
honest user strives to provide good service, unsatisfactory transac-
tions may happen from time to time due to uncontrollable factors
such as network delays or interruption of delivery services, which
have to be captured through probabilistic models). Therefore, it is
very difficult, if not impossible, to purely rely on theoretical analy-
sis to reason about the ultimate future state of a system and derive
the optimal strategy directly.

We adopt an empirical approach that approximates the optimal
strategy of an attacker. Specifically, COMPARS explores the fu-
ture system states after an attacker takes up to k actions, similar
to the idea of MiniMax [21]. Among these future states, COM-
PARS picks the one that is most beneficial to the attacker, and uses
it to determine the attacker’s next action. When doing so, we use
a probabilistic reasoning method to deal with the non-deterministic
nature of other users, which we will detail in sections 4 and 5.

Our main contributions are summarized as follows.

e We propose a general methodology to unbiasly and practically
evaluate the resilience of trust functions by considering the adaptive
nature of realistic attackers. The essential principle is to compare
different trust functions based on their worst cases, i.e., to examine
their vulnerability to manipulation when attackers adopt the opti-
mal strategy specific for each trust function.

e We present the design of a highly configurable platform for trust
function resilience evaluation. Through a set of well-defined inter-
faces, the platform allows us to plug in key modules of a reputation
system, including honest user behavior models, initial system en-
vironment parameters, attack objectives and trust functions, so that
we can study the resilience of a reputation system under various
configurations. Once these basic modules are provided, the plat-
form will automatically approximate the optimal strategies for an
attacker to reflect the true resilience of the system (i.e., the worst
case scenario).

e As a case study, we use COMPARS to compare several influen-
tial trust functions, including EigenTrust [13], PeerTrust [29] and
TNA-SL [12], and observe their differences in terms of resilience
to malicious manipulations.

The remainder of the paper is organized as follows. We start
by discussing related works in Section 2. In Section 3 we present

an abstract model of reputation systems, and introduce some ba-
sic concepts and notations used throughout this paper. Section 5
presents the proposed analysis framework, COMPARS. We provide
a detailed description about four functional components of COM-
PARS in this section. Moreover, we discuss the evaluation criteria
of COMPARS that considers the adaptive nature of attackers. Sec-
tion 6 presents experimental results and analysis of existing repu-
tation systems with the COMPARS framework. Finally, Section 7
concludes the paper.

2. RELATED WORK

A number of reputation systems have been proposed with the
goals of ensuring trustworthy transactions between participants [1,
3,5, 12, 13, 24, 29, 30, 33]. Most research efforts focus primar-
ily on the design of trust functions. For example, some reputation
systems utilize a few power (trustworthy) nodes to compute trust
values [13, 33]. PeerTrust[29] employs similar ideas, but is built
in a decentralized system. Some systems utilize additional infor-
mation such as relationships between participants (e.g., transitive
chains/paths) [12]. These reputation systems have shown their ap-
plicability in different application domains, and their effectiveness
has been analyzed under a few scenarios in which malicious users
attempt to exploit the systems. However, these systems are de-
signed for specific application domains, and are evaluated only on
those targeted domains, making general comparison difficult.

In order to facilitate a systematic analysis, several papers dis-
cuss design issues of reputation systems [9, 17, 26] and classify
trust functions into a few categories [4, 16, 23, 27, 32]. Some of
them further discuss attacks and defenses related to design issues
[9]. Papers that deal with design issues can offer a clear view on
different dimensions of reputation systems with a common crite-
ria [9, 17, 23, 26, 27, 32]. Also, existing reputation systems can
be theoretically analyzed with the proposed criteria[2]. A theoretic
analysis, however, has the limitation that it does not take a practi-
cal perspective into account. Indeed, Jgsang et al. address that a
reputation system, which is considered theoretically robust, can be
nevertheless vulnerable in realistic environments [11]. Unlike the-
oretical approaches, we construct an evaluation framework that can
generate quantitative assessment so that the different systems can
be compared in a fair and consistent manner.

A few studies have attempted to address and evaluate the re-
silience of trust functions [2, 4, 7, 15, 28]. Jgsang ef al. and
Hoffman et al. discuss a set of properties to evaluate reputation
systems [9, 11]. Although they mention resilience, they do not pro-
vide an analysis of resilience, instead focusing on algorithm anal-
ysis including how to compute trustworthiness. Zunping et al.[4]
classify trust-based recommender systems into three categories and
pick a representative system in each category to analyze their re-
silience. Through experiments, the authors prove vulnerabilities in
trust-based recommender systems. However, their evaluations are
limited to a few specific recommender models and specific attacks.

Fullam et al.[7] propose a testbed to evaluate reputation systems,
called ART. Unfortunately, ART can only be used in a few specific
applications and it only allows a small number of participants. Con-
sequently, ART can deal with only simple and static user/attack
behavior scenarios, which is unrealistic. For example, every par-
ticipant is assumed to behave in exactly the same way, attackers do
not change their behavior, and no participant can enter/leave during
evaluation. Instead, we employ a probabilistic reasoning method to
handle a large number of users’ behavior.

Kerret al.[15] propose a more general platform, TREET, to an-
alyze reputation systems. Although TREET is more flexible than
ART, supporting both centralized and decentralized systems, it can
only handle marketplace scenarios and specific attacks in the mar-



ketplace. Our COMPARS framework, on the other hand, is general
and domain-independent.

West et al.[28] and Irissappane ef al.[10] propose evaluation frame-

works based on empirical approaches. West et al. define possible
user/attacker behavior models and implements a simulator with a
static trace. Irissappane ef al. simulate reputation systems with
static user behavior models and fixed attack models. Static be-
havior models and traces, however, make systems vulnerable by
nature, since attackers may be well-aware of how a trust function
works and intentionally change their behavior to exploit a reputa-
tion system. Further, both [28] and [10] do not take users’ non-
deterministic nature into consideration. Hence, it is hard to handle
real scenarios where each user may have their own behavioral pat-
tern in [28] and [10]. In contrast, we employ a probabilistic user be-
havior model to capture the non-deterministic nature of other users.

Considerable research on evaluation frameworks lies in the clas-
sification of reputation systems and attacks/defenses in reputation
systems [2, 9, 10, 18, 26, 28]. These works try to classify reputa-
tion systems considering their resilience against a few static attack
models [2, 4, 6, 10, 11, 14, 24, 25, 28]. In contrast, we believe an
evaluation based on static attack models is not sufficient to reflect
the true resilience of a reputation system. Instead, we propose an
evaluation framework that captures the adaptive nature of attack-
ers who can exploit the properties of specific trust functions and
behave accordingly to maximize their profits.

3. REPUTATION SYSTEM

Reputation systems help users estimate the trustworthiness of
other parties in a decentralized system. By decentralized, we mean
that entities are autonomous; there is no single centralized author-
ity that asserts the trustworthiness of entities, or makes decisions on
the appropriate actions of an entitie. This concept is orthogonal to
the underlying exchange structures of a system including central-
ized (e.g., e-commerce systems) or decentralized (e.g., a peer-to-
peer file sharing systems). We assume that entities in a decentral-
ized system interact with each other through transactions. Trans-
actions are not limited to monetary interactions; they also include
activities such as retrieving information from a website, download-
ing files from a peer, and etc. We assume that a transaction is uni-
directional, i.e., given a transaction, there is a clear distinction be-
tween a service provider and a service consumer.

In general, reputation systems share a common structure[9], typ-
ically modeled as a 5-tuple (C, P, R, F, A), where C' is a set of
service consumers, P is a set of service providers, R is a set of
feedbacks, F' is a trust function, and A is a set of actions. We de-
scribe the five components in detail below.

Service consumers. A service consumer is an entity who seeks
services from a decentralized system, such as a buyer in an e-
commerce market and a downloader in a file-sharing system. Each
consumer is associated with a profile, which is a set of properties
that are relevant to reputation management. For example, a profile
may include the time a consumer joins the system and demographic
information. A service consumer may have a set of services that it
would like to get from the system at a certain time, but such in-
formation is not likely to be publicly known. Hence, we do not
explicitly model it as a part of a consumer’s profile. Instead, it is
modeled by a consumer behavior model, which is essential to rea-
son about the evolution of a reputation system.

Service providers. A service provider is an entity who offers a
set of services that may be requested by consumers (e.g. sellers in
an e-commerce market and uploaders in file-sharing applications).
Usually, the set of services offered by a provider is public (e.g., in

ebay we can see all the items a seller is selling, but we do not know
what items a buyer may need). Therefore, the services offered by a
provider is a part of its profile. Its profile may also have other sim-
ilar properties to that of consumers. Note that the set of consumers
and providers may not be disjoint; an entity may be a consumer in
one transaction and a provider in another.

Feedbacks. A feedback ~ for a transaction takes the form (¢, p, i, 7, t),

meaning that consumer c received service ¢ from provider p at time
t, and its rating is r. We leave the format of the rating opaque as
it is application specific. In many systems, it is a single numeri-
cal/categorical value (e.g., 0 to 5 stars, or from poor to excellent).
In others, it may instead be a vector that reflects a transaction’s
quality from multiple aspects, e.g., price, product quality, and re-
sponsiveness of customer service.

Trust function. If an entity o wants to evaluate the trustwor-
thiness of another entity b, then we call a and b the source and
target of the trust evaluation, respectively. A trust function takes a
source, a target and a set of feedbacks, and returns the target en-
tity’s trust score. Similar to feedbacks, the format of a trust score is
also opaque, and depends on the specific trust function. Most trust
functions return a single numerical value as a trust score, while
some others advocate returning a vector of numerical values [32],
each corresponding to an aspect of the target.

Most trust functions in the literature are subjective (i.e., from the
point of view of different sources, the same target may have dif-
ferent trust scores). Some other functions are objective (or global),
meaning the trust score of an entity does not depend on the source.
Nevertheless, the above modeling of trust functions is general enough
to capture both types of functions.

Actions. An entity can take many different actions in a reputa-
tion system. For example, a provider may list a set of services that
are available to others; a consumer may choose to start a transac-
tion with a provider; a consumer may post a positive or negative
feedback regarding a transaction; a provider may provide good or
poor transactions intentionally or unintentionally, etc.

The set of actions essentially defines the capabilities with which
an attacker can manipulate a system, and is highly system-specific.
For instance, many e-commerce systems have mechanisms to en-
sure that an entity cannot post a feedback unless it was indeed
a consumer in a transaction. Other systems, such as online rat-
ing systems, cannot verify whether an entity has direct experience
with a service before rating it. As another example, some systems
require a user to present some real-world credentials (e.g., credit
cards) before creating an account, to circumvent Sybil attacks[3].
Many other systems however allow free entry. Therefore, attackers
may create multiple accounts and launch coordinated manipulation
through these accounts.

As discussed earlier, an adaptive attacker does not stick with a fixed
strategy to game a reputation system. Instead, it would evaluate the
possible consequences of actions available at any given time, and
decide which action is the best to achieve its goal. Note that the
consequence considered might not be just the immediate ones. In-
stead, it is often desirable to consider an action’s long term impact
to identify the best action at present. For example, cheating in a
transaction at present might give the attacker an immediate pay-
off, but it may dramatically hurt its trust score such that consumers
are much less likely to come to the attacker for service in the fu-
ture, which is not desirable for achieving its goal (e.g., get a certain
amount of profits in the shortest time). Thus, in terms of the overall
long-term payoff, it may not be the best action to cheat immedi-
ately at present. To model this reasoning process, we introduce the
concept of the state of a reputation system and its transition.



The state of a reputation system is a 3-tuple (C, P, R), consist-
ing of the set of consumers, the set of providers, and the set of
feedbacks in the system. When an action occurs in a system, its
state will change accordingly. For instance, when a new user joins
the system, C' is updated; when a provider lists a new service, its
profile is updated; R is updated when a new feedback is issued.
Let S; be the system state at time ¢o. After an action a happens at

. .. it
time ¢1, the system state transitions to Sy, , denoted Sy M Sty -
Given a sequence of actions X = (a1,t1),. .., (a:,t;), we denote

. X
the transition as Sy, — Si..

4. OPTIMAL ATTACK STRATEGIES

The attackers’ goal is to manipulate a reputation system to gain
advantages (e.g., money payoff, free downloading, or spreading of
malware). To do so, attackers often change their behavior accord-
ing to the change of system states. Hence, it is important to model
attackers’ adaptive behavior to evaluate the resilience of trust func-
tions. Attackers essentially try to find and perform the most effec-
tive attack for a specific trust function. Clearly, the most effective
attack will be different for different trust functions; and attackers
should have an optimal strategy to perform the most effective attack
for the trust function. We model a reputation system as a game, in
which players are either normal users or attackers. In Section 4.1,
we first explain our model of a game in reputation system, and we
describe how to find the optimal strategy in sections 4.2 and 4.3

4.1 Games in Reputation Systems

Generally, there are multiple players in a game whose type can
be normal users and attackers in a reputation system. Depending
on the setting, a player may join or leave during the game. Each
player has multiple choices of actions in each turn and a system
state transitions to the next system state depending on each player’s
action.

For a reputation system to reflect a user’s true trustworthiness,
users are expected to behave in a way that the system wants them
to (i.e., to behave in a predictable manner). For example, a reputa-
tion system requires consumers to give a high (low) rating to a good
(bad) service[31]. However, each user may behave in its own way,
not the same way as other users. For instance, one user may tend to
give relatively low ratings habitually, even when it is satisfied with
a service; an honest user strives to provide good service, but un-
satisfactory transactions may still occur due to unreliable delivery
from third-party. Hence, the behavior of normal users is predictable
yet non-deterministic, and each normal user has its own behavior
model.

An attacker, on the other hand, tries to game a reputation system
to achieve its goal. Therefore, from an attacker’s point of view, a
reputation system sets up a single-player game. The trust function
along with the behavior models of normal users forms the environ-
ment and rules of the game. The goal of an attacker is to carefully
choose its actions to maximize its profit. To choose an action in
each turn, an attacker considers the consequence of the action. That
is, the attacker needs not only to examine a current system state, but
also to estimate a future system state. For example, an attacker will
choose a certain action, if it estimates the action will bring a profit;
an attacker will not choose a certain action, if it estimates the action
will punish itself.

Theoretically, given a trust function and models of normal user
behavior, there exists an optimal strategy for an attacker to achieve
its goal. Unlike classical games such as chess, however, there are
a large number of users whose behavior is non-deterministic in a
reputation system. Also, the design of reputation systems is more
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Figure 1: An attack tree

complicated. Therefore, purely using a theoretical analysis to pick
the optimal attack strategy can be very difficult. We thus employ an
empirical approach to explore future system states after an attacker
takes a sequence of actions and approximate the optimal strategy
of the attacker. Similar to the idea of MiniMax[21], we represent
possible system states as a tree, called an attack tree, but only in an
attacker’s point of view. In the following subsections, we delineate
how we generate an attack tree.

4.2 Attack Tree

A conceptual view of an attack tree is shown in Fig.1. The formal
definition of an attack tree is given as follows.

Definition 1. An attack tree is a rooted tree given by <S, X, A>,
where

e S is the set of nodes, each of which (S; = (C;, P;, R;)) repre-
sents a system state at a certain time point.

e X isthe set of edges, each of which (X; = {(a1,t1), ..., (@m,tm)})

represents a sequence of normal users’ actions.
o A is the set of edges, each of which (A; = (ai, t;)) represents
one of an attacker’s possible actions.

As discussed in Section 3, a system state transitions into the next
system state, whenever an action occurs. The action may be per-
formed by attackers or normal users. The attack tree, however, is
employed to derive the attackers’ optimal strategy, while estimat-
ing future system states from an attacker’s point of view. Accord-
ingly, we do not represent every possible system state that evolves
depending on a normal user’s action as a node. Instead, we rep-
resent system states as nodes only when an attacker is involved in
the transactions. In order to differentiate a system state right after
an attacker’s single action A; from a system state after a sequence
of normal users’ actions X;, we represent the former as a square
node and the latter as a round node. Each round node (except the
root node) has n square child nodes, each of which corresponds
to a system state after an attacker’s action A; occurs. Each square
node and the root node have one round child node corresponding to
a system state after a sequence of normal users’ actions X; occurs.

We assume that an attacker is involved in a transaction at time
ty(j =0,...,n). And S;»(j = 0,...,n) are the system states
at time ¢t;/(j = 0,...,n). As shown in Fig.1, when an attacker
tries to estimate a system state, a sequence of normal users’ ac-
tions is generated first by randomly choosing users and their ac-
tions according to the users’ behavior models. Each action results
in a transition into a new system state. A node Sy transitions to
a node S| after a sequence of normal users’ actions Xo happens,
as shown in Fig.1. At time ¢o» when an attacker is involved in
a transaction, the attacker has a set of choices A;’s, i.e. the at-
tacker’s possible actions. After taking one of the actions, an at-
tacker will estimate its next system state. Depending on which ac-



AttackBehavior()
l: S — S[)
20+ 0
3: Gen_AttackTree(S,r)

Add_Node(Parent S, Child 5.)
1: Add S. as one of S,,"s children into an attack tree.

Gen_AttackTree(System state S, 1)
I:re—r+1
2: 5. + Normal_Sequence(Sy)
3: Add_Node(S,, S.)
4: for k=0to N do
5 [/ Do an action ay.
6 Sy « Get_SystemState(S.,ax)
7 Add_Node(S., Si)
8: if r < My then

9: Gen_Attacki'ree( Sk, r)
10:  end if
11: end for

Get_SystemState(System state S,,, Action a)

1:
2:
3:

S, = 8,
S, transitions to S.. after a happens.
return S.:

Normal_Sequence(S,)

l:
2:
3
4:
5:

for k=0to Ls do
Randomly pick a user and its action, w.
Sp + Get_SystemState(Sy, w)

end for

return 5,;

Sp: an initial system state
S;: System states at time 1
Myp: Maximum height of an attack tree.

T

A counter for the height of an attack tree

A: The set of attackers” possible actions to achieve their goals.

ai: An attacker’s one possible action at a certain time point. (€ A)

N a: The number of attackers’ possible actions at a certain time point.
2: The set of normal users’ possible actions.

w: One of normal users’ actions. (€ £2)

Lg: Chosen length of one sequence of normal users™ actions.

Figure 2: The pseudocode for generation of an attack tree
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Figure 3: An attack tree with sample sequences

tion is taken by the attacker, a node S, transitions to its n child
nodes, Soi (1 = 1,...,n).

An attacker repeats this reasoning process, until the number of
the attacker’s transactions exceeds a certain number, which is de-
fined by the attacker. We call the number of the attacker’s trans-
actions in an attack tree as the height of the attack tree, which is
the same as the depth of a tree only considering round nodes. For
example, the height of the attack tree in Fig.1 is two. Ideally, if we
can explore all possible system states, we can get the most accurate
estimate of an attacker’s optimal strategy. In practice, it would be
computationally infeasible to explore the whole space of state tran-
sition. We thus limit the maximum height of an attack tree so that
attackers can predict future system states with a reasonable compu-
tation. Fig. 2 shows the pseudocode to generate an attack tree.

4.3 Attack Tree with Sample Sequences

A system state is determined by the behavior of a large num-
ber of users, which is likely to be probabilistic, as discussed earlier.
Since the generation of an attack tree is an estimation process of the
attackers, only one sequence of normal users’ actions would not be
representative to reflect a large number of users’ probabilistic be-
havior. We thus sample the users’ actions to make better estimation
of system states. That is, we generate sample sequences of normal
users’ actions, instead of one single sequence of normal users’ ac-

tions. We now describe how we generate an attack tree with sample
sequences of normal users’ actions.

Fig.3 depicts an example of an attack tree with sample sequences
of normal users’ actions. Similar to Fig.1, we assume that an at-
tacker is involved in a transaction at time ¢;/(j = 0,...,n) and
S;1(7 = 0,...,n) are system states at time t;/(j = 0,...,n).
Whenever an attacker tries to estimate a system state, m sample
sequences of normal users’ actions X (k = 0,...,m) are gener-
ated first. Each sequence X ;i is generated by randomly choosing
users and their actions according to the users’ behavior models. Al-
though each action results in a transition into the next system state,
we only represent system states after the last action in the sequence
X1, occurs as nodes in an attack tree. Hence, a node Sy transi-
tions to nodes S§;, (i = 0, . .., m) after sequences of normal users’
actions Xox(k = 0, ..., m) happen, as shown in Fig.3.

To estimate a system state at t;/(j = 0,...,n), we need to an-
alyze the distribution of system states S%, (k = 0,...,m). Then,
the attacker picks a representative system state, S}, among S (k =
0,...,m)’s for the time, ¢;/(j = 0,...,n). The representative
system state can be defined by the attacker. For example, let v} (k =
0,...,m) be the trust score of an attacker at each system state,

;k(z = 0,...,m). Then, the attacker may choose a system state
S} avg» at which an attacker’s trust score v ,,, is the average of
trust scores v}, (¢ = 0,...,m), as a representative system state for
the time, ¢,/ (j = 0,...,n).

Similar to Fig.1, the attacker has a set of choices A;’s, i.e. at-
tackers’ possible actions, at time ¢;; when an attacker is involved
in a transaction. After taking one of the actions, an attacker will es-
timate its next system state. Depending on which action is taken by
the attacker, a node .S transitions to its n child nodes, Sj;(j =
1,...,n). An attacker repeats this reasoning process, until the
number of the attacker’s transactions exceeds a certain number,
which is defined by the attacker.

5. COMPARS: A FRAMEWORK FOR COM-
PARISON OF REPUTATION SYSTEMS

The goal of the proposed approach is to evaluate trust functions
in the presence of adaptive attack behavior. In Section 5.1, we first



User
Behavior
Model

Initial Attacking
Parameter Goal

Initial State . Reasonin;
Event Transaction £

Generator Manager
Generator Generator 8

| i
| System Environment
I T
.

Profit
Model

] Evaluator

Transaction M

| !
S

Figure 4: The architecture of COMPARS

give a brief overview of the proposed framework, called COMPARS
(COMPArison of Reputation Systems). In sections 5.2, 5.3, 5.4,
and 5.5, we discuss four major functional components of COM-
PARS and the evaluation criteria of COMPARS.

5.1 Overview of COMPARS

COMPARS simulates the evolution of a reputation system. The
framework is built with basic components common to reputation
systems so that any reputation system can be easily integrated into
COMPARS and so that different trust functions can be evaluated
with COMPARS. Fig.4 shows the architecture of COMPARS, which
consists of four functional components: initial state generator, trans-
action manager, reasoning manager, and evaluator.

As noted before, strategic attackers often change their behavior,
depending on specific properties of trust functions and of normal
users. In order to reflect an attacker’s adaptive strategy, COMPARS
considers a reputation system from the attacker’s point of view. Es-
sentially, given the initial system state, the goal of an attacker is to
carefully choose its behavior to maximize its profits. COMPARS
thus derives an attacker’s optimal strategy to achieve its goal. First,
the initial state generator generates an initial system state, which
is defined by basic user information (e.g., the list of consumers,
providers, and items each user has). Given the initial system state,
the transaction manager controls who will be involved in each
transaction. In general, normal users will not change their behavior
much. Along with this observation, the transaction manager takes
user behavior models as input. The transaction manager consists of
an event generator and a transaction generator. The event genera-
tor controls who will be a consumer, ¢, based on a current system
state and user behavior models. Depending on the user behavior
models, the transaction generator decides who will be chosen as a
provider, p by a consumer, c. In Section 5.3, we discuss how we
define behavior models for normal users in detail.

Given a trust function and a system state, attackers attempt to
game a reputation system to achieve their goals. Different from
normal users, attackers are adaptive so that they are able to choose
the optimal strategy under a specific system state. For attackers to
derive their optimal strategy, COMPARS explores the future system
states after an attacker takes up to k actions. COMPARS represents
possible system states with different attacking actions as an attack
tree, as illustrated in Section 4.

The reasoning manager handles the reasoning process of attack-
ers, generating attack trees to reason about the attackers’ future ac-
tions. By monitoring a generated tree, COMPARS picks the most
beneficial action to the attacker and uses it to determine the next
action that the attacker should take. Given the optimal strategy,
the evaluator carries out the optimal strategy and evaluates the re-
silience of the reputation systems.

In the following sections, we describe each component in detail.

c: A consumer who wants to get a service

St, St1, St,: System states at given time ¢, £1, and t2, respectively
Y..: The set of consumers’ strategies to pick service providers

oc: C’s strategy to pick service providers (€ X.)

v : A feedback from a single transaction

ConsumerBehavior()

1: Pick a service provider p who meets the requirements of o.

2: Do a transaction with p.

3 S c gets a service S
Dot t1

4

5

. Issue a feedback, .
c issues a feedback ~y
S,

. Stl

Figure 5: A consumer’s behavior and the evolution of system
states

5.2 The Initial State Generator

An initial system state is the system state before an attacker’s
action. Note that COMPARS simulates the evolution of a reputa-
tion system in an attacker’s point of view. Hence, the initial state
does not mean no transactions ever happen in the system. An at-
tacker may join in the middle of a system; or, normal users can be
compromised by attackers and start to behave maliciously. To gen-
erate the initial system state, the initial state generator takes initial
parameters as input, including basic information (e.g., the list of
consumers, providers, and services offered by providers). With the
given parameters, the initial state generator generates the initial
system state So = (C, P, R), where C' is a set of service con-
sumers, P is a set of service providers, and R is a set of feedbacks.

5.3 The Transaction Manager

Given the initial system state, the transaction manager controls
who will be involved in each transaction. As mentioned earlier,
normal users in reputation systems are likely to behave consistently.
The transaction manager takes user behavior models as input. Our
abstract model of normal user behavior is as follows. Note that the
abstract model is not fixed, but is flexible and able to accommodate
different user behavior model.

A. A Consumer Behavior Model: A consumer seeks services
from a decentralized system. While doing so, a consumer needs to
choose a set of services it would like to get as well as a provider
from whom it would like to get the services. Given a trust func-
tion, a consumer’s strategy for choosing a provider may vary de-
pending on a current system state. For example, one consumer
may choose a provider whose trust value is over certain threshold,
whereas another may only choose the top-ranked providers in the
system. Based on its own strategy at a given system state, consumer
¢ chooses provider p and starts a transaction with p. After c gets
service i, ¢ issues feedback . Fig.5 describes how a system state
evolves depending on a consumer’s action.

B. A Provider Behavior Model: A provider offers a set of ser-
vices, which is usually publicly known. Therefore, provider p’s set
of services should be a part of its profile, as discussed previously.
However, even if a provider offers the same services at different
time, the quality of transactions may vary due to uncontrollable
factors such as network delays or interruption of delivery services.
Also, a provider may want to change the quality of transactions for
the same services depending on the trust function and consumers’
strategies. For example, uploaders in file-sharing applications may
publish normal quality files rather than high quality files to save
their resources. As another example, sellers in e-commerce mar-
kets who do not have a good transaction history may try to post
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Figure 6: A provider’s behavior and the evolution of system
states

only best items to repair their reputations. Note that this is differ-
ent from the attackers’ behavior, in which an attacker intentionally
provides good or bad services to maximize its profits. To capture
such factors, we use a provider behavior model in addition to a
provider’s profile. Fig. 6 shows a provider’s behavior and how a
system state evolves depending on a provider’s action.

Provider p lists a set of services and waits until it is chosen by
a consumer. If p is not chosen within a certain time, p checks the
current system state and changes its strategy to offer the services.
For instance, p may offer the same quality of services at a lower
price or p may offer a better quality of services at the same price.

Given the initial system state and user behavior models, the trans-
action manager controls who will be involved in each transaction.
The transaction manager consists of the event generator and the
transaction generator. Based on the current system state and user
behavior model, the event generator picks a consumer who will be
involved in each transaction. For example, the event generator may
pick a user as a consumer only when its trust value is over a certain
threshold. Once the event generator picks consumer c, the transac-
tion generator selects provider p depending on c’s strategy to pick a
service provider. The quality of each transaction is decided depend-
ing on a specific system configuration. In some reputation systems,
one provider may explicitly mention (advertise) a service quality;
or, a reputation system may have its own measure to judge a service
quality [28].

5.4 The Reasoning Manager

As described in Section 4, sophisticated attackers often change
their behavior intentionally based on the trust functions. If a frame-
work evaluates trust functions based on a set of pre-defined strate-
gies, this always leaves chances for attackers to exploit trust func-
tions by using different strategies that are not adopted in the eval-
vation. COMPARS thus employs an empirical approach to model
attackers’ adaptive behavior, which is delineated in Section 4.

A reasoning process begins when an attacker is chosen for a
transaction, generated by the transaction manager. An attacker can
be a consumer or a provider. The reasoning manager takes an at-
tacker’s goal as input. The attacking goal can be defined with a
few parameters, which may include, but are not limited to a trust
score, a profit, and a time period. For example, an attacker may
want to achieve its profit goal within a certain time period, while
maintaining a trust score above a certain value; or, an attacker may
want to demote a competing provider’s trust score so as to prevent

the provider from being chosen by consumers. To compute profits
from a given action, the reasoning manager takes a profit model as
input. A profit model is a method to compute profits resulting from
a single action at a specific system state.

Depending on a specific reputation system, the attacker may have
different choices of actions at each system state to achieve its goal.
For example, if allowed by a system, an attacker may also create a
new account, so that it can control multiple accounts in one reputa-
tion system. Accordingly, the reasoning manager takes into account
the attacker’s capabilities in a given reputation system and handles
the attacker’s reasoning process in the system, so that COMPARS
can accurately predict the optimal action at present.

The reasoning process continues until the maximum reasoning
step (i.e., the maximum height of an attack tree) is reached. More
reasoning will lead to better estimation. The amount of reasoning
performed, however, will impact computation overhead. Therefore,
we limit the maximum number of reasoning steps so that COM-
PARS can predict future system states with a reasonable amount of
computation.

5.5 The Evaluator

A good trust function will restrict the chances for an attacker to
exploit a system. In other words, if an attacker can achieve its goal
early, it is expected that the trust function is vulnerable to manip-
ulation. Hence, the evaluator observes how many transactions are
required for an attacker to achieve its goal with its optimal strategy.

6. EXPERIMENTAL RESULTS AND ANAL-
YSIS

This section describes an analysis of reputation systems using
COMPARS. Many reputation systems have been developed in dif-
ferent application domains[32]. To show the validity of COM-
PARS, three influential reputation systems—EigenTrust [13], PeerTrust
[29], and TNA-SL [12]—have been integrated into the COMPARS
framework. Note that COMPARS is general and domain-independent,
so that there are many ways to materialize COMPARS depending
on which reputation system will be evaluated. For example, differ-
ent user behavior models and profit models can be used to evaluate
different reputation systems. Here, we provide a few case stud-
ies with the three reputation systems in an eBay-like e-commerce
system; and show how COMPARS can be used to observe the re-
silience of different reputation systems with adaptive attackers.

We implemented EigenTrust and PeerTrust ourselves, and mod-
ified and adjusted the TNA-SL code by Andrew G. West ez al [28].
As discussed in Section 2, EigenTrust is designed for peer to peer
file sharing applications with the assumption that there are peers
who always behave in an honest way and can thus be pre-trusted.
PeerTrust is implemented in a decentralized P2P environment with-
out any pre-trusted users. TNA-SL utilizes a theoretical approach
with a greater emphasis on prior direct interaction. Details of the
three reputation systems can be found in their respective papers
[12, 13, 29]. Considering the fundamental differences between
these three systems, we believe other reputation systems can be
integrated easily into COMPARS and evaluated as well. We first
present the parameters used for our experiments in Section 6.1 and
we present experimental results in Section 6.2.

6.1 Materialization

Table.1 summarizes the notation for the parameters used in our
experiments. Except for experiments where we needed to change
some parameter values, we used the default values listed in the ta-
ble.

Normal user behavior model: As mentioned earlier, the behav-
ior of normal users in e-commerce markets (e.g., eBay) is typi-



Parameter Description Default

Ny the number of users in our network 100

Ns the number of samples for reasoning 15

H; feedback reliability rate of a consumeri 1.0

Qi service quality rate of a provider i 1.0

Oc consumers’ strategy to choose a provider ~OVER

TRUST

G an attacking goal (the amount of profit 60
that an attacker wants to get)

Mt the maximum height of an attack tree for 1
reasoning

Tavg the average of trust values *

@ arange value to calculate profits 0.01

or threshold to be selected as a provider Tgug
with “OVER TRUST” strategy

ORr threshold to be selected as a provider Ny X %

with “OVER RANK?” strategy

Table 1: List of parameters for experiments

cally predictable, but non-deterministic. Such nature can be cap-
tured by probabilistic models [28, 31]. We thus employed two
parameters-feedback reliability rate H; and service quality rate Q;,
each of which was defined for consumers and providers, respec-
tively. Feedback reliability rate H; is the probability that consumer
1 gives feedbacks consistent with true service quality; service qual-
ity rate (); is the probability that provider ¢ offers good services.

The value for H; ranges from 0.0 to 1.0, where consumers whose
H; is close to 0.0 are untrustworthy and those whose H; is close to
1.0 are trustworthy. Although normal consumers’ H; should usu-
ally be close to 1.0, 0.0 does not necessarily mean the consumer is
an attacker. This is because it is possible that one consumer may
keep offering bad feedbacks for good services unintentionally, be-
cause of uncontrollable factors (e.g., a consumer is under a bad
network condition or a bad delivery service); or, a consumer may
accidentally give good feedbacks for bad services. We used a de-
fault value of 1.0 for H;.

The value for Q; also ranges from 0.0 to 1.0, where providers
whose Q); is close to 0.0 are untrustworthy and those whose Q); is
close to 1.0 are trustworthy. Similar to H;, 0.0 does not necessar-
ily mean the provider is an attacker, because uncontrollable factors
(e.g., a provider is under a bad network condition or a bad delivery
service) may affect the provider’s service quality. We used a default
value of 1.0 for Q;.

Each trust function in three reputation systems (i.e., EigenTrust,
PeerTrust, TNA-SL) returns a single trust score for each user re-
flecting their trustworthiness. In many reputation systems, the trust
score is often represented as either a trust value that ranges from
0.0 to 1.0 (i.e., a trust value-based approach) or a rank among users
(i.e., arank-based approach) [9, 32]. We thus defined two strategies
for a consumer to choose a provider. One is “OVER TRUST” with
which a consumer will choose a provider whose trust value is over
a certain threshold. A consumer can choose a threshold ér to pick a
provider when the “OVER TRUST” is selected. Another is “OVER
RANK” with which a consumer will choose a provider who is in
the set of top-ranked providers. A consumer can choose a threshold
O r to define top-ranked providers so that a user will be chosen as a
provider if its rank is higher than dr. If a consumer does not have
any strategy, a provider will be chosen randomly. Most reputation
systems employ a trust value-based approach. We thus assumed
that users choose “OVER TRUST”, except when we compare trust
value-based with rank-based approaches.

Although each user may behave in its own way, we assumed in
this experiment that every user follows the same behavior model

Reputation Profit (Cheating) Profit (No cheating)
> Tovg +5 % 20 10
> Tovg +4*a 18 9
> Tovg +3*a 16 8
> Tovg +2 % a0 14 7
> Thovg + @ 12 6
> Tavg 10 5
> Toug - 8 4
>Tovg-2%a 6 3
>Tovg -3 % 4 2
> Tovg -4 *a 2 1

Table 2: Profit setting

for simplicity. That is, every user was assumed to share the same
feedback reliability rate, the same service quality rate, and the same
strategy to choose a provider. Also, normal users are often expected
to behave consistently regardless of reputation systems. Accord-
ingly, we plugged in the same normal consumer/provider behavior
models to COMPARS for a fair evaluation of three reputation sys-
tems. That is, if a consumer whose feedback reliability rate is 1.0
has a transaction with a provider whose service quality rate is 1.0,
the consumer’s feedback about the transaction is the highest value
in each system.

Attacker: An attacker can be a consumer or a provider. In this
experiment, however, we assumed that the attacker is a malicious
provider who wants to increase its profit in e-commerce markets so
as to clearly show the attacker’s profits while it carries out the best
actions. For simplicity, we assumed that there is a single attacker in
the system who has two possible actions at each system state, i.e.
provide a bad service (cheating) and provide a good service (not
cheating). Note that we can add more choices of actions to deal
with various types of attacks. For example, we may allow creating
a new account as one of an attacker’s possible actions to capture
Sybil attacks.

Reasoning: When an attacker reasons, COMPARS should de-
cide the maximum height Mt of an attack tree for a reasoning pro-
cess, i.e. the maximum number of reasoning steps. We used 1 as
default value of M.

While generating an attack tree, we produced 15 sample sequences
of normal users’ actions based on their behavior models, resulting
in transitions to 15 system states at each timepoint. Although an at-
tacker is not involved in the transactions, the attacker’s trust score
at each system state may or may not be different, because of global
aggregations in some reputation systems [13]. For simplicity, we
picked a system state as representative for the given time at which
an attacker’s trust value is the average of an attacker’s trust values
at 15 system states.

Attacking goal and profit model: We assumed the goal of the
attacker is to get an amount of profits G with a default value 60 by
gaming the system. Table 2 shows how we calculated an attacker’s
profits at each system state, whose rationale is explained below.

Although it is hard to define a definite relation, a number of stud-
ies have found that in e-commerce markets, the provider’s reputa-
tion has impacts on the profits it can get in each transaction [19, 22]
. Also, Hazard et al. [8] and Melnik et al. [19] have found that
the reputation and profits have a multiplicative relationship on e-
commerce markets such as eBay. Along with previous studies, we
allocated different amounts of profits that an attacker gains from a
single action, depending on an attacker’s reputation. Since we used
“OVER TRUST” as the default strategy for normal users to pick
providers, we assumed that an attacker gains profits depending on
its trust value.



An attacker will essentially try to look like normal users so that
it will try to maintain its trust value similar to that of normal users.
If the attacker’s trust value is too low compared to that of normal
users, it would be easily identified as untrustworthy and avoided
by others; therefore, the attacker will not be able to make profits
[19, 22]. We thus assumed that an attacker’s profit will depend on
how far its trust value is from the the average trust value of users.
We divided users into 10 groups according to how far a user’s trust
value is from the average trust value. Depending on the range of
users’ trust values, we set a value cv. Let T, and T4, denote the
average and maximum trust value of users, respectively. Then,

Tma:c - Tavg
5

We generated 100 sequences of normal users’ actions to compute
Tavg and T'q. for the three trust functions.

An attacker in e-commerce markets attempts to make more prof-
its by cheating [9, 14]. Clearly, if an attacker can gain a large profits
without cheating, it does not need to cheat. Therefore, we assumed
that an attacker makes more profits by cheating, and set a larger
value of profit when an attacker is cheating at a specific state.

The entries of Table 2 indicate that if an attacker’s trust value is
over a defined trust value in the column, Reputation, it will get
profits depending on its action, cheating or no cheating. The first
entry, for instance, means that if an attacker’s trust value is larger
than T4 + 5 *ov, it will get 20 profits if it cheats; 10 profits if it
does not cheat.

Even though an attacker may gain more profits by cheating at
a specific system state, it does not mean that the attacker’s best
strategy is to keep cheating all the time. That is because its trust
value will change depending on its actions and the profit at a given
system state is affected by its trust value. The relationship between
attack goals and optimal strategies will be discussed in Section 6.2.

Since an attacker is a malicious provider in our experiments, we
assumed for simplicity that normal providers’ Q; is 1.0. Note that
a consumer chooses a provider whose trust value is over a certain
threshold. Therefore, the attacker can still be chosen by a consumer
as long as it maintains its trust value over the threshold.

o=

6.2 Analysis of Existing Reputation Systems
with COMPARS

In this section, we present our experimental results and analysis
of the three reputation systems by plugging in parameters discussed
in Section 6.1 to COMPARS. Note that different conclusions can be
drawn from evaluations with different user behavior models, profit
models and attack goals. In other words, our results do not mean
an absolute conclusion that one reputation system is more or less
resilient than another regardless of parameters.

Clearly, an attacker will try to choose the optimal strategy with
which it obtains large profits within a small amount of time. That
is, an attacker’s goal is to reduce the number of transactions to sat-
isfy a given profit goal G; whereas, the goal of trust functions is
to increase the number of the attacker’s transactions. We thus eval-
uated the number of the attacker’ transactions Nirqns to satisfy a
given profit goal with different normal user behavior models (Sec-
tion 6.2.1) and different number of reasoning steps (Section 6.2.2).

6.2.1 Analysis with Normal User Behavior Models

As mentioned before, we used consumers’ feedback reliability
rate and provider’s service quality rate to handle non-deterministic
nature. Since an attacker in our experiments is assumed to be a
malicious provider, we assumed service quality rates of normal
providers are 1.0 for simplicity.
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Figure 7: The required number of an attacker’s transactions
with change in consumers’ feedback reliability rate

Fig. 7 shows the required number of an attacker’s transactions
Nirans (Y-axis) with varying consumers’ feedback reliability rates
H; (X-axis). Even though each user can have different feedback
reliability rates, we assumed that every consumer shares the same
feedback reliability rate for simplicity.

A low feedback reliability rate of a consumer means that the con-
sumer’s feedback is not consistent with true service quality. There-
fore, a consumer with a low feedback reliability rate has a high
probability of giving a good feedback for an attacker’s bad service
(i.e., cheating). In other words, the attacker’s misbehavior will not
be punished under a given trust function, if most users have low
feedback reliability rates. In such a case, the attacker’s optimal
strategy is cheating continuously to achieve its profit goal early,
because the attacker obtains more profits by cheating at each sys-
tem state and cheating will not damage the attacker’s reputation
much. Consequently, the required number of an attacker’s transac-
tions Nt,qns decreases as consumers’ feedback reliability rate H;
decreases, as shown in Fig. 7.

EigenTrust uses the weighted sum of each user’s local trust value
to compute global trust values and pre-trusted peers are responsi-
ble for a big part of the computation because of their large weight.
Although pre-trusted peers should have a high H;, it is possible for
pre-trusted peers to issue bad feedbacks because of uncontrollable
factors as discussed in Section 3. We thus assumed even pre-trusted
peers share the same H; with other users. Hence, a low H; of pre-
trusted peers allows an attacker to manipulate a system easily. That
is, the resilience of EigenTrust greatly depends on the feedback re-
liability rate of normal users (especially that of pre-trusted peers),
compared with PeerTrust and TNA-SL. Accordingly, N1rans Un-
der EigenTrust greatly decreases (i.e., less resilient than PeerTrust
and TNA-SL), as the feedback reliability rate gets lower.

We considered two typical strategies (i.e., OVER TRUST and
OVER RANK) for consumers to choose a provider. To compare the
resilience of trust functions under different consumers’ strategies,
we thus assessed the number of an attacker’s transactions N7, ans
with those two strategies as shown in Fig. 8.

PeerTrust takes 1.0 as a trust value for every user at an initial
state. An attacker thus has a high trust value for a while from the
beginning of transactions under PeerTrust, because of its initial pa-
rameters. An attacker under PeerTrust can thus reach a goal early
(i.e., less resilient) with a high trust value compared to EigenTrust
and TNA-SL; because the trust value of an attacker is still rela-
tively high, even though it continues to cheat in the first several
steps. Since an attacker can get more profits by cheating at one
specific state, an attacker’s optimal strategy under PeerTrust is to
cheat continuously for a while from a initial state. However, the
attacker will not have a high trust value if a lot of continuous cheat-
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Figure 8: The number of required transactions to reach a goal
with two strategies

ing actions are performed. Hence, Nr,qns increases gradually, as
G increases as shown in Fig. 8.

Similar to PeerTrust, the curve of N7, qns shows a gradual in-
crease under TNA-SL, as the goal G increases as shown in Fig. 8;
because TNA-SL weighs information from direct interaction. As
the number of transactions increases, more direct information will
be collected. Hence, the trust values under TNA-SL reflect more
accurate information with more direct information, as the number
of transactions increases. However, EigenTrust utilizes normal-
ized global trust values so that the difference between an attacker’s
trust values with more or fewer transactions is relatively small [13].
Therefore, Nt ,qns increases in almost direct proportion to the G
under EigenTrust as shown in Fig. 8.

When “OVER TRUST” is employed, a consumer should choose
o7 that defines the minimum trust value required for a provider to
be selected. If “OVER RANK” is employed, a consumer should
choose dr to define the maximum rank for a provider to be se-
lected. To compare the resilience of trust functions under different
thresholds, we evaluated the required number of an attacker’s trans-
actions N7.,qns With different values for dr and dg.

Fig. 9 represents the required number of an attacker’s transac-
tions with different values for a threshold dr in trust value-based
reputation systems. Initially, we used the average trust value T, vg
of users for dr and increased by p% with the following equation
until an attacker does not satisfy the required threshold.

5T == Tavg + (1 - Tavg) * P

A large value of 67 implies that consumers set high standards for
providers’ reputations. As dr increases, the attacker should have
more honest transactions (more actions with no cheating) to build a
reputation and to be selected as a provider. At each system state, an
attacker’s profits from not cheating are smaller than the profits from
cheating. Hence, the required number Nr7rqns Of the attacker’s

transactions increases gradually, as 7 increases. And, Nrrans
increases dramatically, when dr increases by 40 % over Tg.vg4.

Fig. 10 illustrates the required number of an attacker’s transac-
tions with different values for a threshold §r in rank-based reputa-
tion systems. Initially, we used the top 50 % for dr and decrease
by p % with following equation until an attacker does not satisfy
the required threshold.

50 —p

— N,
Or = Nu x —a5

A small value of dr means that consumers set high standards of
providers’ reputations. As Jr decreases, an attacker should be-
have honestly in more transactions (more actions with no cheat-
ing) to build a reputation and to meet consumers’ requirements.
As mentioned above, an attacker’s profits from not cheating are
smaller than the attacker’s profits from cheating at each system
state. Hence, N7,qns increases incrementally, as 0 g decreases.

6.2.2 Effect of Different Number of Reasoning Steps

COMPARS can choose different number of reasoning steps to
make more or less accurate estimation of the attacker’s optimal
strategy. Therefore, we evaluated the number of the attacker’ trans-
actions Nirans to satisfy a given profit goal with changes in the
number of reasoning steps as shown in Fig. 11.

As shown in Fig. 11, Nirans (Y-axis) decreased as the attacker
performs more reasoning steps (X-axis). This indicates that the
attacker can achieve its goal much more efficiently with more rea-
soning steps. The number of reasoning steps essentially mean that
the attacker behaves more or less adaptively (i.e., 0 reasoning step
means static behavior and more reasoning steps mean more adap-
tive behavior). Accordingly, Fig. 11 shows that highly adaptive at-
tackers can indeed better game the system, compared to less adap-
tive attackers.

EigenTrust assumes that there exist pre-trusted peers who are the
most trustworthy and computes trust values with a weighted sum
of each user’s local trust value. Pre-trusted peers are thus assumed
to follow static behavior model and the weight of them is much
greater than that of other normal users. If an attacker acts badly to
pre-trusted peers, it will greatly damage the attacker’s trust value,
because of their weight. Consequently, it is relatively easy (i.e., less
reasoning is needed) for an attacker to guess how a system works
and to estimate its optimal strategy (i.e., no cheating, if a pre-trusted
peer is involved in a transaction; otherwise, behave depending on
each user’s behavior). In other words, the attacker can save its time
in satisfying a given profit goal G with a small number of reasoning
steps. As shown in Fig. 11, an attacker can greatly reduce N¢rans
with only three reasoning steps under EigenTrust.

PeerTrust assumes that every user has the highest trust value at an
initial state, so that an attacker’s first few actions will not have sig-
nificant impacts on the attacker’s trust value. That is, it will be hard
for the attacker to guess how a system works within a few reason-
ing steps. Hence, more reasoning is needed to reach a goal sooner.
As shown in Fig.11, an attacker will begin to reduce the number of
transactions greatly with reasoning steps more than three.

TNA-SL weighs information from direct interaction. As more
transactions have done in the system, users who have relatively
many direct interactions may appear under TNA-SL. In such a case,
the feedback of those users will have bigger impact on others. In
other words, those users who had a lot of direct interactions un-
der TNA-SL can be considered to play a similar role to pre-trusted
peers under EigenTrust. Similar to EigenTrust, it will greatly dam-
age the attacker’s trust value for an attacker to act badly to those
users. It is thus relatively easy (i.e. needs less reasoning) for an
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attacker to guess how a system works. As shown in Fig. 11, an
attacker can greatly reduce the number of transactions with only
three reasoning steps under TNA-SL.

An interesting finding in Fig. 11 was that with 1 reasoning step,
EigenTrust was much more resilient than PeerTrust and TNA-SL;
but with 5 reasoning steps, EigenTrust and TNA-SL offer similar
resilience. This corroborates that the evaluation of resilience with
less reasoning (i.e., static or less adaptive attack) do not reflect the
true resilience of a trust function.

7. CONCLUSION

The adaptive nature of strategic attackers presents challenging is-
sues for the evaluation of resilience of trust functions. Specifically,
reputation systems based on static user models leave opportunities
for malicious parties to exploit systems easily by changing behavior
arbitrarily with knowledge of trust functions. This paper presents
an evaluation framework for the COMPArison of Reputation Sys-
tems (COMPARS), which models adaptive attackers. COMPARS
simulates attackers’ optimal strategies with an attack tree. We eval-
vated the resilience of trust functions against attacks by observing
how many transactions are required for attackers to achieve their
goal based on assumption that a good trust function will restrict the
opportunities for attackers to exploit a system,
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