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Abstract

Advanced Metering Infrastructure (AMI) has evolved
to measure and control energy usage in communicating
through metering devices. However, the development of the
AMI network brings with it security issues, including the
increasingly serious risk of malware in the new emerging
network. Malware is often embedded in the data payloads
of legitimate metering data. It is difficult to detect malware
in metering devices, which are resource constrained em-
bedded systems, during time-critical communications. This
paper describes a method in order to distinguish malware-
bearing traffic and legitimate metering data using a disas-
sembler and statistical analysis. Based on the discovered
unique characteristic of each data type, the proposed
method detects malicious metering data. (i.e. malware-
bearing data). The analysis of data payloads is statistically
performed while investigating a distribution of instructions
in traffic by using a disassembler. Doing so demonstrates
that the distribution of instructions in metering data is
significantly different from that in malware-bearing data.
The proposed approach successfully identifies the two
different types of data with complete accuracy, with 0%
false positives and 0% false negatives.

Index Terms—Advanced Metering Infrastructure, secu-
rity, malware, smart meters, disassembler, ARM instructions

I. Introduction

Today, the Advanced Metering Infrastructure (AMI)

manages energy consumption and demand response

through metering devices (i.e. called smart meters). The

AMI provides bi-directional communication services for
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real-time control and management. However, it also raises

a lot of security issues, including privacy invasion and

vulnerability to network-borne attacks [16]. To overcome

recent problems, research has focused on security solutions

in the AMI [8], [16], [15], [9], [18], [22], [13].

In 2010, the Stuxnet worm[4] attacked

SCADA(Supervisory Control And Data Acquisition)

systems and PLCs(Programmable Logic Controllers) in

industrial systems [18], [22]. A McAfee report warned of

the ease with which attackers could exploit smart meters

and take control of the whole system [15]. In 2009, Mike

Davis of Blackhat showed how quickly the smart meters

could be compromised by malware and how quickly

malware could propagate worms in the meters [9]. In the

literature, many defense methods against malware have

been proposed[3], [21], [25]. However, existing techniques

to defend against malware cannot be directly applied

to the AMI because of its unique system specifications,

its different network protocols and environments, and

resource-constrained metering devices.

In this paper, we first identify the characteristics of

metering data and malware in terms of the distribution

of instructions when a disassembler is used. Malware is a

form of binary executables attached to data payload that

pretend to be metering data; however, metering data does

not usually include binary executables. Based on this fact,

we derive the characteristics of metering data and malware-

bearing data through disassembly. The distributions of

instructions are statistically analyzed to generate a unique

pattern for each data type. This unique pattern is used to

identify metering data in the traffic that contains malware.

Malware writers often obfuscate data and hide file struc-

tures to avoid detection [1], [19], [25], [12]. Furthermore,

metering data often does not have any structure, thus

no separated sections are available and the data looks

like random sequences of binary values. Disassembling

unstructured data is challenging. Therefore, we perform

statistical analysis of all of the AMI traffic data instead of
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focusing on a specific portion of the data. As a result of

our disassembly and statistical analysis, we were able to

validate that metering data and malware have significantly

different instruction distributions. Based on the unique

distribution of each data type, the proposed method clusters

unique patterns that represent each data type. The clustered

patterns will be used to identify unknown data to detect

malicious metering data.

Our main contributions are summarized as follows.

First, we propose a methodology to distinguish metering

data and malware in the AMI based on the distribution

of instructions. We extract instruction distributions from

metering data and malware-bearing data to show their

distinct differences. Second, we propose a method to detect

malicious metering data by using unique patterns clustered

from the instruction distributions. Lastly, our proposed

method is validated with real metering data collected

in the AMI and real binaries in the embedded systems.

The preliminary results indicate that our method will be

feasible for future use in the AMI.

The remaining parts of this paper are organized as

follows. In Section II, we review related work. Section III

proposes our method to detect malicious metering data.

In Section IV, we validate our method with our research

results. Finally, we conclude in Section V with suggestions

for future research.

II. Related Work

The AMI provides real-time two-way communications

between utility companies and end customers with smart

meters. In addition to the smart meters, it consists of

smart meters, data concentrated units(DCU), and a Head-

end system with other management systems. It aims to

support various services, such as automatic meter reading,

automated energy distribution, demand response and load

management, through interaction between the utility and

the customer. The DCU or the Headend system acting as

a client aggregates metering data by sending control com-

mands to the meters. The smart meters acting as a server

generate responses to the commands to transfer metering

data and other information into the DCU or the Headend.

There are a lot of communication protocols used for those

systems including wireless and wired networks, and unique

proprietary protocols are still under investigation.

In spite of the benefits of the AMI, it causes a lot

of security issues. Since the smart meters do not usu-

ally have security mechanisms [24], compromised smart

meters present the most serious potential damage to the

AMI [16], [5]. Even though the meters have a security

protocol, they are always vulnerable to malware during

communications [16], [5].

Attackers often hide malware into the incom-

ing/outgoing traffic in a system while masquerading as

benign data. In the alternative, attackers may directly

attack vulnerable open services. Previous malware detec-

tion methods fall into two categories: static analysis and

dynamic analysis. Static analysis utilizes a disassembler

to detect malware without its being executed. Through

disassembly, these approaches derive specific signatures.

The signatures can be extracted by pattern matching[7],

instruction flow[17], and data flow[6]. On the other hand,

dynamic analysis monitors execution behavior of malware

in a virtualized environment [14], [10], [2]. It is impos-

sible to create the virtualized and isolated environment in

embedded systems like smart meters. Wei-Jen et al.[25]

propose a statistical analysis method to detect files with

hidden malicious code by using n-gram analysis. Even

though the proposed method quickly catches a certain

evidence of infected file, it has limitations in that they only

analyze a certain portion of a file. However, it is necessary

to capture all behavior [23] because malware often changes

behavior during execution.

III. The Proposed Approach

This section describes the proposed approach to block

malicious metering data in AMI. In subsection III-A, we

first give a brief overview of the proposed approach.

The details of the proposed approach are followed in

subsections III-B and III-C.

A. Overview

The goal of the proposed approach is to filter unex-

pected data out of the AMI. While doing so, we perform

statistical analysis on the data payload before it is accepted

into applications. Fig.1 presents a system architecture of

the proposed approach. As shown in Fig.1, there are two

functional components in the proposed approach. One is to

generate unique patterns for each data type and the other

one is to classify unknown data based on generated patterns

and to detect malicious metering data. Note that the unique

pattern is not for a particular family of malware for which

obfuscated malware is easily evaded. Instead, we generate

a unique pattern representing all families of same type.

In subsection III-B, we first describe a method to char-

acterize the unique distribution of instructions for different

types of data. The details of the proposed method to detect

malicious metering data will follow in subsection III-C.

B. A Distribution of Instructions

In order to extract a distribution of instructions, we first

need to disassemble data: metering data and malware (i.e.
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(a) Generating patterns with k-mean clustering

(b) Detecting malicious metering data based on the
clustered patterns

Fig. 1. System Architecture
Mnemonic Description Mnemonic Description
AND AND ADD Add
ADC Add with carry B Branch
BIC Bit Clear BL Branch with Link
BX Branch and Exchange CDP Coprocessor Data

Processing
CMN Compare Negative CMP Compare
EOR Exclusive OR LDC Load coprocessor from

memory
LDM Load multiple regis-

ters
LDR Load register from mem-

ory
MCR Move CPU register to

coprocessor register
MLA Multiply Accumulate

MOV Move register or con-
stant

MRC Move from coprocessor
register to CPU register

MRS Move PSR
status/flags to register

MSR Move register to PSR sta-
tus/flags

MUL Multiply MVN Move negative register
ORR OR RSB Reverse Subtract
RSC Reverse Subtract with

carry
SBC Subtract with carry

STC Store coprocessor
register to memory

STM Store Multiple

STR Store register to
memory

SUB Subtract

SWI Software Interrupt SWP Swap register with mem-
ory

TEQ Test bitwise equality TST Test bits

TABLE I. ARM instruction set

malware-bearing data). By using disassembler [11], we

obtain a distribution of instructions for each of the two

types of data. The distribution indicates the frequency of

an instruction within a given file. Table I shows a list of

34 basic ARM instructions provided by the information

center1.

Fig.2(b) and Fig.2(a) represent distributions of instruc-

tions for 255 pieces of metering data and 255 pieces of

malware data, respectively. The X-axis represents each

instruction, while the Y-axis represents the percentage of

each instruction over the total number of instructions in

the data. Also, Fig.3 represents the average distribution of

instructions for the two different types of data. The X-axis

represents each instruction, while the Y-axis represents the

1http://infocenter.arm.com

Fig. 3. Average distributions of instructions

ratio of each instruction compared to the total number of

instructions in the data.

As illustrated in Fig.3 and Fig.2, metering data and

malware-bearing data have significantly different distri-

butions of instructions. First of all, most instructions

are evenly used when data include malware (i.e. binary

executables), while a set of only a few instructions are

shown in legitimate metering data. Specifically, only a

few instructions including eor, ldr, msr, rsb, str, and teq

are used in metering data. However, malware-bearing data

generally show a lot of control flow instructions. In other

words, malware-bearing data have a lot of b (jump) and

bl (call) instructions to change the execution flow in the

executables. However, such control flow instructions are

never shown in disassembled metering data. Instead, as

shown in Fig.2(b), most instructions only relate to data

processing and data transfer instructions. In addition, the

range of used instructions is dedicated to a specific few

instructions, rather than being evenly distributed. These

observations are clear and invariant since legitimate me-

tering data do not display the executable characteristics

needed to shift control flow.

An interesting finding from the results of disassembly is

that we can identify a data type just from the distribution

of instructions. This is based on the observation that

same data type shows a similar distribution of instructions

and similar statistical characteristics, as shown in Fig.2.

Furthermore, distributions of the two different types of data

represents significantly different statistical characteristics.

The following subsection III-C describes a technique to

detect malicious metering data (i.e. malware-bearing data)

by utilizing these unique instruction distributions.

C. Detecting Malicious metering Data

1) Pattern Generation: K-mean clustering is a cluster-

ing method that partitions observations into k clusters with

a distance measure. In k-mean clustering, each observation

is assigned to the cluster with the closest centroid. As

discussed in subsection III-B, the distribution of instruc-

tions that results from disassembly of the two types of data

are distinguishable. This means that the variation among

492



(a) Distributions of binary executables (b) Distributions of metering data

Fig. 2. Distributions of instructions for the two different data types

k: The number of clusters

K-meanCluster()

1: Randomly pick k data from a training set as the initial

k centroids

2: repeat
3: for each remaining data f in the training set in b

do
4: Compute distances between f ’s distribution and k

centroids’ distributions

5: Assign f to the cluster whose centroid is the

closest to f
6: Update the centroid

7: end for
8: until Centroids stabilize

Fig. 4. K-mean clustering for generating pat-
terns

distributions for the same type of data is likely to be very

small. The same type of data will thus be assigned into

the same cluster, the centroid of which will be utilized

as the signature for each data type to generate a unique

pattern. Alternatively, data can be partitioned into a sub-

category (i.e. subdata-type), depending on the application

or other behavioral factors; however, we build multiple

sub-models with k-mean clustering, so that each type can

be partitioned into k clusters. Fig.4 describes the k-mean

clustering algorithm used in the proposed approach.

In order to compute a distance, we employ Euclidean

distance, the definition of which is as follows:√√√√
n∑

i=1

(fi − ci)2, (1)

where fi is the ith element in the distribution vector of

unknown data f and ci is the ith element in the distribution

vector of each centroid.

The result of Fig.4 is a set of k models, each having

its centroid distribution as the pattern for the model. The

generated unique pattern will be used as a signature to

distinguish metering data and malware-bearing data.
2) Classification: In order to detect malicious metering

data (i.e. malware-bearing data) with the given patterns,

we compute a similarity score between an unknown datas

distribution and each centroids distribution. Note that we

are interested in the relationship between whole distribu-

tions, not in any specific instruction. Therefore, we employ

Pearsons correlation coefficient that takes the correlation

between data into consideration.

The definition of Pearson’s correlation coefficient is as

follows: ∑n
i=1(fi − f)(ci − c)√∑n

i=1(fi − f)2
√∑n

i=1(ci − c)2
, (2)

where fi is the ith element in the distribution vector of

unknown data f , ci is the ith element in the distribu-

tion vector of each centroid, f is
∑n

i=1 fi/n, and c is∑n
i=1 ci/n.

The coefficient value ranges from -1 to 1, where -1

indicates the complete opposite and +1 indicates the exact

same value.

Given unique patterns and unknown data f, we compute

Pearson’s correlation coefficent between f ’s distribution

and each pattern. The data f will be classified into a

model, where the correlation score between the centroid
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k(Number of
clusters)

Metering(training)-
Metering(testing)

Malware(training)-
Metering(testing)

k=1 0.994740821 0.037243701
k=2 0.994740821 0.070434112

-0.197042512 0.037243701
k=3 0.994740821 0.037243701

-0.05388775 -0.096403763
0.090942814 -0.101779978

k=4 0.994740821 0.037243701
0.129430554 -0.127191319
0.112773705 0.365893756
-0.127939407 0.014168807

TABLE II. Similarity scores with a meter test-
ing set when applying different k for cluster-
ing

distribution and f distribution is the highest, i.e. the closest

to 1.

IV. Experimental Results and Analysis

This section shows experimental results with analysis.

Note that both metering data and malware can have differ-

ent types of data so that sub-types can be determined by k-

mean clustering. There are two types of data: metering data

and malware(i.e. executables). Metering data is collected in

the TCIPG testbed 2 as described in [20]. The executables

are extracted from an embedded board based on an ARM

processor. When traffic contains malware instead of meter-

ing data, it must include a form of an executable to produce

malicious behavior. A type of executable is a predictable

and unchanged feature of malware. Therefore, we redefine

the executables as malware-bearing data, simply put, as

malware.

We conducted experiments in two different settings. In

the first setting, we used 1,428 randomly selected pieces

of metering data for the training set, and 357 pieces of

metering data and 357 pairs of binary malware for testing

sets. In the second setting, we used 285 randomly selected

binary executables for the training set, and 72 pieces of

metering data and 72 binary executables for the testing

sets.

Table II presents the averages of the similarity scores

obtained with a meter testing set when applying dif-

ferent k for clustering from two training sets: metering

data and malware. As described in Table II, the highest

similarity score between distributions of meter testing

data and distributions of meter training sets’ centroids

is 0.994740821, regardless of k. In addition, the highest

similarity score between distributions of meter testing data

and distributions of executable training sets’ centroids

is 0.037243701 for k=1,3, 0.070434112 for k=2, and

0.365893756 for k=4. Since 0.994740821 is bigger than

2http://tcipg.org

k(Number
of clusters)

Metering(training)-
Malware(testing)

Malware(training)-
Malware(testing)

k=1 0.038593981 0.749101155
k=2 0.038593981 0.030832381

-0.091239562 0.749101155
k=3 0.038593981 0.749101155

-0.265149142 -0.24249148
-0.063116444 0.08251172

k=4 0.038593981 -0.045049109
0.09276004 0.274175541
-0.003548511 0.749101155
0.171073048 0.085521288

TABLE III. Similarity scores with a executable
testing set when applying different k for clus-
tering

0.037243701, 0.070434112, or 0.365893756, metering data

is always correctly classified into metering data using the

proposed approach, regardless of k, which means there

are 0% false negatives. Note that in our experiments, both

metering data and malware included only one sub-type of

data, respectively. Consequently, there is one cluster for

each type of data that includes most of the data in the

training sets and the other clusters include a few outliers.

Accordingly, the similarity score will be very low.

On the other hand, Table II presents averages of simi-

larity scores with an executable testing set when applying

different k for clustering from two training sets: metering

data and malware.

As described in Table III, the highest similarity score

between distributions of executable testing data and distri-

butions of meter training set centroids is 0.038593981 for

k=1,2,3 and 0.171073048 for k=4. In addition, the highest

similarity score between distributions of meter testing

data and distributions of executable training set centroids

is 0.749101155, regardless of k. Since 0.749101155 is

bigger than 0.038593981, executables are always correctly

classified as executables rather than as metering data using

the proposed approach, regardless of k, which means

there is a rate of 0In the same context, the similarity

between metering data and malware will be very low as

demonstrated in Table III.

Itron (smart meter) Raspberry Pi Linux System
Processor ARM-M3 ARM1176JZ-F Intel Core i3
RAM 256Kb 512Mb SDRAM 3GB
Flash 512KB 4GB 30GB
Cache No cache 32k-64k 1GB

Fig. 5. Different System Specifications
Compared to the general desktop, a disassembly is a

heavy operation to perform in a smart meter because the

embedded system has limited resources. Table 5 shows

a comparison of various system specifications: the system

specification of smart meter is provided by Itron company;

the Raspberry PI is a popular embedded system; and the

last system is a general desktop on Linux. Fig. 6 shows the
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Fig. 6. Performance overhead on Raspberry Pi.

results of performance overhead when the disassembler is

used in these different systems. The overhead is generated

by the round-trip time when requests and responses are

transmitted during the communication of a server and

a client. The average round-trip time without the disas-

sembler was around 160ns, and with the disassembler

was around 208ns. This shows the small overhead when

the disassembler is used. However, as the file size to

be disassembled increases, the performance overhead also

increases.

V. Discussion and Future Work

A smart meter is an attractive target for malicious

purposes of attackers. In order to quickly and automatically

detect and prevent malware propagation in the AMI, we

proposed a methodology to differentiate metering data and

malware-bearing data in this paper. In the AMI, malware

often takes the form of binary executables, attached to

data payload while pretending to be metering data, but

metering data does not usually include binary executables.

Therefore, the proposed approach focused mainly on the

differentiation of legitimate metering data and binary ex-

ecutables. To do so, we performed statistical analysis to

derive the unique statistical characteristics of metering data

versus malware. The distributions of instructions in each

type of data are significantly different from each other.

Based on this fact, the proposed approach generated a

unique pattern for each type of data in terms of instruction

distribution.

Our research on malware detection in the AMI will

continue in several future directions. Even though we only

used datasets of metering data and binary executables

without differentiating sub-types, we will consider various

different subtypes of data in the future.
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