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Abstract—High-quality intelligence of Internet threat (e.g.,
malware files, malicious domains, phishing URLs and malicious
IPs) are important for both security practitioners and the
research community. Given the agility of attackers, the scale
of the Internet, and the fast-evolving landscape of threats, one
could not rely solely on a single source (such as an anti-malware
engine or an IP blacklist) for obtaining accurate, up-to-date,
and comprehensive threat analysis. Instead, we need to aggregate
the analysis from multiple sources. However, it is non-trivial to
do such aggregation effectively. A common practice is to label
an indicator (malware, domains, URLs, etc.) as malicious if it
is marked by a number of sources above an ad-hoc certain
threshold. Often, this results in sub-optimal performance as
it assumes that all sources are of similar quality/expertise,
independent, and temporally stable, which unfortunately are
often not true in practice. A natural alternative is to train
a supervised machine learning model. However, this approach
needs a sufficiently large amount of manually labeled ground
truth, which is time-consuming to collect and has to be updated
frequently, resulting in substantial recurring costs.

In this paper, we propose SIRAJ, a novel framework for
aggregating the detection output of various intelligence sources
such as anti-malware engines. SIRAJ is based on the pre-
train and fine-tune paradigm. Specifically, we use self-supervised
learning-based approaches to learn a pre-trained embedding
model that converts multi-source inputs into a high-dimensional
embedding. The embeddings are learned through three carefully
designed pretext tasks that imbue them with knowledge about
dependencies between scanners and their temporal dynamics.
The learned embeddings could be used for diverse downstream
machine learning tasks. SIRAJ is designed to be general and
can be used for diverse domains such as URLs, malware, and
IPs. Further, SIRAJ works well even when there is limited
to no labeled data available. Through extensive experiments,
we show that our learned representations can produce results
comparable to supervised methods while only requiring as little
as 100 labeled samples. Importantly, the results show that
SIRAJ accurately detects threat indicators much earlier than
the baseline algorithms, a feat that is critical against short-lived
indicators like Phishing URLs.

I. INTRODUCTION

High-quality intelligence of Internet threat (aka, threat vec-
tors) such as malware files, malware URLs (that are used
for malware distribution), and malicious IPs, is vital to both
security practitioners and researchers. For practitioners, such
intelligence will help detect and prevent compromises, and
effectively protect users and critical IT infrastructure. For
researchers, high-quality intelligence is paramount for reliable
and comprehensive experimental evaluation of novel machine
learning-based cyber security solutions. Considering the ever-

evolving landscape of Internet security, one cannot rely on a
single source for detecting threats. An alternative is to aggre-
gate the output from multiple sources and then integrate them
to derive a more reliable score. VirusTotal [1], for example, is a
popular website that provides scanning services for IPs, files,
and URLs. For concreteness, let us consider the VirusTotal
URL scan service for detecting phishing and malware-hosting
URLs. It aggregates results from over 70 third-party scanners
ranging from popular ones such as Google Safe Browsing
(GSB), Sophos, and Fortinet to less known ones such as Lumu,
VX Vault, and GreenSnow. These scanners exhibit different
types of expertise – for example, OpenPhish specializes in
detecting phishing URLs, while URLhaus specializes in de-
tecting malware URLs, and GSB specializes in both. This
divergence makes the problem of combining multiple-source
intelligence (such as VirusTotal) into an integrated high-quality
one quite challenging.
Prior Approaches and Their Limitations. Given the im-
portance of this problem, there has been extensive work on
developing various heuristics for aggregating the predictions
of multiple detectors into a single detection. A simple and
commonly used method is to use a cutoff threshold τ . If
more than τ intelligence sources (e.g., VirusTotal scanners)
identify an entity as malicious, it is treated as malicious.
However, there is no consensus among the community on
the appropriate threshold. For example, prior work using
VirusTotal has chosen thresholds of 1 [2], [3], [4], 2 [5], [6],
and 5 [7]. Setting a too-high threshold would miss a lot of
malicious cases, while a too-low threshold would introduce
many false positives. The threshold-based approach implicitly
treats each intelligence source as having similar expertise and
quality, contradicting several prior works [8], [9], [10], [11].
Furthermore, using a static threshold cannot handle dynamic
scenarios where the quality of intelligence sources varies with
time. This could result in fluctuations of the maliciousness of
an entity which is undesirable [8], [9]. An alternate approach
is to train a machine learning (ML) model that can take as
input the predictions of multiple sources (such as VirusTotal
URL scan reports or multiple IP blacklists) and output a single
prediction about the maliciousness of the entity. The state-
of-the-art approaches [12], [5], [13], [14], [15], [16], [17],
[18], [19], [20] have achieved high accuracy. However, such
approaches are not sustainable in practice as training ML
models (especially deep learning based) require a large number
of manually labeled training data. Collecting such data is time



consuming and requires constant updates to compensate for
concept drift where the distribution of the test data increasingly
differs from the training data.

A. Outline of Technical Results

We propose SIRAJ, a novel solution framework that can
intelligently and accurately aggregate the predictions of vari-
ous threat detectors. SIRAJ has the following properties that
distinguish it from prior work. SIRAJ is a unified framework
that can be applied for diverse domains in a transparent man-
ner. In our experiment section, we evaluate our approach over
four types of malicious entities – Phishing URLs, malware
URLs, malware files and malicious IPs. SIRAJ achieves this
by a careful design of domain-agnostic representations. In
other words, instead of designing features for each domain
(URLs vs. malware files vs. IPs), we propose a novel approach
that represents prediction of multiple sources as a dense high-
dimensional vector that encodes various information such as
the dependencies between different sources and their temporal
dynamics. Another practical concern is that the initial threat
indicators are often not reliable, and it takes several hours
or even days before they produce stabilized results for fresh
inputs. However, phishing and malware attacks increasingly
use disposable URLs used only for a few hours. To reduce the
potential damage, it is paramount to detect malicious entities
from early unreliable reports. SIRAJ’s embeddings capture
the temporal relationship among different intelligence sources,
allowing it to detect malicious entities much earlier than either
threshold-based or supervised ML-based approaches.
Overview of Our Approach. Our framework is based on the
pre-train and fine-tune paradigm [21]. It is often much easier
to collect a number of unlabeled reports from sources such
as VirusTotal and aggregated IP blacklists. However, the cost
of labeling the data is much higher. Hence, it is desirable to
design a solution that requires limited to no labeled data. We
design three novel pretext tasks for which labeled data could
be obtained automatically without the need of any domain
expert. These tasks are carefully designed to learn relevant
features such as the dependencies between various sources
and their temporal dynamics. The output of these tasks is an
encoder that can convert multiple intelligence reports into an
embedding that is domain and time-invariant. We use multi-
task learning [22] so that we learn a single encoder for all these
three tasks. Once the encoder is pre-trained using unlabeled
data, it could then be used for diverse downstream tasks
(e.g., classification, clustering or prediction). To the best of
our knowledge, we are the first to propose such a generic
framework based on self supervised learning that could be
reused for multiple types of malicious entities. We focus
on two common settings – one with a limited amount of
labeled data and one with no labeled data at all. Our learned
representations can outperform supervised methods while only
requiring as little as 100 labeled samples.
Summary of Contributions.

• We propose SIRAJ, a unified framework for aggregating
multi-source intelligence for diverse entity types, includ-
ing URLs, malware files, and IPs.

• We design three novel pretext tasks for self-supervised
learning. The goal of these tasks is to learn the de-
pendencies between intelligence sources and temporal
dynamics across time. We learn a single embedding that
is consistent with all these three tasks.

• SIRAJ outperforms threshold-based, supervised ML-
based, and generative model-based approaches, in terms
of not only accuracy but also timely intelligence. Our em-
beddings are robust to random and adversarial corruptions
and gracefully handle concept drift.

Paper Outline. We introduce the relevant preliminaries in
Section II. We provide an overview of the components of
SIRAJ in Section III. The generative model is introduced in
Section IV while the pretext tasks for self-supervised learning
are introduced in Section V. We describe how to use SIRAJ to
develop supervised, semi-supervised and unsupervised classi-
fiers for diverse downstream tasks in Section VI. We describe
experimental results in Section VII, and conclude with some
parting thoughts in Section IX.

II. PRELIMINARIES

SIRAJ is designed to work with the intelligence of diverse
Internet threats. In this paper, we use the generic term entity to
refer to objects that could be either benign or malicious and be
used in attacks, e.g. binaries, domains, URLs and IPs. We use
the term scanner to represent a source of threat intelligence of
a certain type of entity, e.g. an antivirus engine, an IP blacklist
or a domain reputation system. When queried about an entity
e, a scanner would report its own assessment of e, which,
without loss of generality, could be malicious, benign or no
information. The assessment from all scanners together form
the scan report of the entity e. We use the term label to denote
the maliciousness or benignness of an entity. Formally, let E =
{e1, e2, . . . , em} be the set of m entities. Suppose there are n
scanners S = {s1, s2, . . . , sn}. We represent the input dataset
for intelligence aggregation by a matrix X = (Xij) 1 ≤ j ≤
m and 1 ≤ j ≤ n with

Xij =


1, if sj detected ei as benign
−1, if sj detected ei as malicious
0, if sj did not scan ei

The scan report Re for an entity e is a vector of dimension
n containing the assessment from each scanner s ∈ S for e.
For a collection of entities e ∈ E′ where E′ ⊆ E we also
collect a time series of scan reports over a period of time
T = {T, T + δ, T + 2δ, . . .} where T represents the starting
time and δ represents the periodicity of data collection such
as 6 hours, 1 day, etc. Rte is the scan report for entity e at
time t. We omit t when the context is clear. We use the time
series to understand the temporal dynamics of scan reports.
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Fig. 1: Overview of Our Approach

III. OVERVIEW OF OUR APPROACH

SIRAJ synthesizes diverse ideas from machine learning
and we provide a high level overview of its key components
in this section. Figure 1 illustrates the general overview of
our approach. Our solution can be decomposed into three key
steps: (1) Generative models, (2) Pre-training, and (3) Fine-
Tuning. We provide a rationale for each of the components
and how all these components fit together in the following.
Then, we provide additional details in Section IV, Section V,
and Section VI.
Solution Framework. Our goal is to learn an appropriate
intermediate embedding representation for scan reports, which
could be used for downstream tasks such as detecting ma-
licious entities without any labeled data or with minimal
labeling. To the best of our knowledge, we are not aware of
any prior work that seeks to learn such an embedding. We
emphasize that our approach is generic and customizable. The
same approach could be used for diverse malicious entities
such as malware, URLs, and IPs through VirusTotal scan
reports or IP blacklists.
1. Generative Models. Prior work such as [10] has shown that
understanding the dependencies between the scanners (using
a generative model) is useful for aggregating the scanner
outputs. However, directly using generative models often fails
due to the mismatch between modeling assumptions and the
real-world. Hence, instead of using the generative model for
prediction, we use it to learn the dependencies and dynamics
exhibited by the scanners and their labels. The learned model
is used to inject domain knowledge into the self-supervised
learning tasks.
2. Pre-Training using Pretext Tasks. While the generative
model is a promising start, it is insufficient on its own for
accurate aggregation of scan reports. The generative model is
an unsupervised approach that can learn the dependencies at
the corpus level. It is necessary to learn more granular details

about the scanner dynamics for accurate aggregation. We
achieve this by employing a self-supervised learning approach
with careful design of three inter-related pretext tasks that
imbue the embedding model with knowledge about depen-
dencies between scanners and their temporal dynamics. The
first task seeks to learn the dependencies between the scanners
when generating the scan report for an entity. While the first
task superficially looks similar to the generative model, they
both learn the scanner dependencies at different granularities.
For example, GM might learn that scanners Si and Sj have
high correlation in their reports. On the other hand, task 1
model could learn that the output of Sj for a particular entity
could be predicted from the output of Si, Sk and Sl. Later,
we conduct experiments to showcase the complementarity
of the generative model and the first task. The second task
tackles the disconnect between early and late scan reports of
a new entity (e.g., phishing or malware URL) by modeling
the temporal dynamics of scanner responses. The goal of the
third task is to learn embeddings that are temporally consistent.
SIRAJ uses a multi-task approach to learn embeddings that
are simultaneously well suited for all pretext tasks.
3. Fine-Tuning. Once the encoder is trained from pretext tasks,
it can take any scan report and generate an embedding that
could be used for various downstream tasks such as detection
and clustering. We consider two fine-tuning scenarios. First,
when there is a limited number of labeled data available (as
little as 100 scan reports), we use a semi-supervised approach
to train an effective discriminative model that achieves similar
performance as a supervised model trained over a much
larger labeled corpus. Second, when there are no labeled data
available, we leverage the properties of the embedding space
to design an unsupervised classifier that outperforms a wide
variety of other unsupervised approaches such as heuristic
thresholds, generative models, and weak supervision.

IV. GENERATIVE MODELS FOR AGGREGATION

In this section, we describe our approach to learn the
dependency structure of a generative model and use it to model
the latent variables of the scanners.
Generative Modeling for Aggregation. A principled ap-
proach for aggregating unlabeled data is generative models.
The key insight is to model the process by which the unlabeled
data (i.e., scan reports) was generated. We treat the true label
of a scan report (malicious or benign) as a latent variable that
generates the observed and possibly noisy scan report. This
contrasts with traditional approaches that try to model the
true label given the noisy scan report. Once the parameters
of an appropriate generative model have been fitted using the
unlabeled data, we could use it to estimate the latent true label
of a scan report. This approach is counter intuitive - yet yields
accurate results if the generative model is appropriate.
Learned vs Specified Generative Models. Prior works that
applied generative models for VirusTotal aggregation [10],
[23] assume that generative models are pre-specified by the
domain expert and only focus on estimating the latent vari-
ables. However, the structure of the generative model has
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a significant impact on its accuracy. The biggest source of
inaccuracy is ignoring the statistical dependencies between the
scanners. For example, scanner s1 and s2 could have highly
correlated scan reports for different entities as they use the
same algorithm in the back end [8]. Not taking that into
account could seriously affect the accuracy of aggregation.
It is unreasonable to expect even a domain expert to specify
the generative models with accurate dependencies.

In this work, we advocate for a novel two-step approach.
First, we leverage recent innovations in weak supervision [24]
to efficiently learn the dependencies. Second, we specify the
generative model using the learned dependencies and use
it to estimate the latent variables corresponding to scanner
accuracies. Our approach differs from prior work in two
aspects: (a) our generative model is constructed using a data-
driven approach; (b) we do not directly use the estimated latent
variables for aggregation – instead, we use them to infuse the
pretext tasks with appropriate domain knowledge.
Learning Dependency Structures. Our generative model
for learning the dependencies between scanners is based on
a factor graph [25]. Such graphs consist of two types of
nodes – variable nodes corresponding to scanners and their
outputs and factor nodes that define the relationships between
variable nodes. For example, the algorithm could designate
two scanners si and sj as related by creating a new factor node
fk connecting to both si and sj . This simple graph structure is
expressive enough to model arbitrary relationships, including
high order dependencies. Similar to [26], we consider pairwise
and conjunctive dependencies. The key challenge is that the
number of dependencies explodes with the increasing number
of scanners. For example, even if we limit ourselves to
pairwise dependencies between any pair of scanners, there are
more than 2500 such dependencies given VirusTotal’s over
70 scanners. One needs a huge amount of data to identify
which of these potential dependencies are irrelevant reliably.
We rely on prior works for efficiently learning the generative
model. First, we learn the dependency structure by leverag-
ing the techniques from [26] that proposed an optimization
formulation for estimating the log marginal pseudo-likelihood
of the output of a single scanner conditioned on the outputs
of all other scanners. Second, once the dependency structure
is known, we use [27] that breaks the generative model into
smaller sub-problems and learns the parameter values through
closed-form solutions. This approach allows one to learn the
parameters in time linear in the size of the data, which is
appealing in a domain where the unlabeled data is abundant.

V. SELF SUPERVISED LEARNING BASED APPROACH

Self supervised learning (SSL) is a recently emerged tech-
nique that builds a supervised learning task (i.e., a pretext
task) from the dataset itself, not from the manually annotated
data [28]. SSL automatically generates pseudo labels based on
the attributes in the data such that pseudo labels are correct
for a specific task. Then model is trained in a supervised
manner using the generated pseudo labels. Essentially, SSL

works by designing pretext tasks to be solved during a pre-
training step. The model trained to solve those pretext tasks
learns representations of data that will be used for downstream
tasks.

SSL has been extensively studied for computer vision and
natural language processing. These domains are well suited for
SSL due to the spatial and semantic structure present in image
or language data. However, such properties do not exist in
tabular domain data such as scan reports, making the problem
of data augmentation and SSL challenging [28]. To the best
of our knowledge, we are not aware of any work on SSL
for aggregating multi-source intelligence such as VirusTotal.
We introduce a novel SSL approach to learn domain and time
invariant representations that are useful for diverse downstream
tasks.
Desiderata for Pretext Task Design. A key challenge in
SSL is the design of an appropriate pretext task such that
(a) the knowledge/embeddings learned is relevant for the
downstream task; and (b) the pseudo-labels for pretext tasks
can be generated automatically and efficiently. We desire that
the embeddings are generic enough to be used for training
ML models for a broad spectrum of downstream tasks such as
(early) detection of malicious entities and detection of attack
types. This could only be achieved by learning some intrinsic
properties of the scan reports.
Transferable Properties of Scan Reports. There has been
extensive work on analyzing the properties of VirusTotal scan
reports along different dimensions such as relative accuracy,
stability, and convergence [29], [8], [9]. Our analysis of
these works identified some generic properties across various
domains and multi-source intelligence aggregators.
• Not all scanners are equal. They vary in their accuracy,

expertise, and consistency of their responses.
• Scanners have sophisticated dependencies between them.

Some scanners have a higher degree of overlap in their
responses than others due to various reasons such as
shared expertise. Some scanners could have specialized
expertise and respond only to a specific class of entities
such as Phishing URLs.

• Complex temporal dependencies exist between scanners.
Even for a fixed entity e, individual scanners could have
disparate behavior over a period of time. Some scanners
could produce a detection result (malicious or benign) and
stick to it. Alternatively, some scanners could flip their
detection results intermittently. Scanners for malware
often exhibit hazardous flips [8] where the label flips to
a different value twice in a short period of time (such
as malicious to benign and back to malicious). Similarly,
some scanners are conservative and lag behind others,
while other scanners could be bellwethers.

Our goal is to design pretext tasks that are cognizant of
these behaviors. It is challenging to design a single pretext
task that can address all the relevant desiderata. Instead, we
propose three intuitive tasks that jointly learn the necessary
dependencies using a multi-task learning framework. Figure 2
illustrates our approach where each row represents each task.

4



Fig. 2: Illustration of Self Supervised Approach.

Given a scan report Re, we pass it to pretext generators for
three pretext tasks, respectively. Pretext Generator 1 corrupts
the scan report based on the masks, while Pretext Generator 2
and Pretext Generator 3 function as identity functions by pass-
ing the input without modification. The corrupted and original
scan reports are passed to an encoder to generate embeddings
z1e , z

2
e , z

3
e that are then fed to the task specific predictors.

We then apply the pretext task-specific loss function on the
predicted output and apply back propagation to improve upon
both the encoders and the predictors. In the following, we
describe each of three tasks in detail.

A. Task 1: Scanner Dependencies

Given an unlabeled dataset of scan reports for various
entities, the goal of the first pretext task is to learn the high-
level dependencies between scanners. A simple but intractable
approach would be to collect some summary statistics such
as correlations between scanners. For example, even if we
limit ourselves to pairwise correlations, there are more than
2500 such values for the 70-odd scanners from VirusTotal’s
URL scanning service. Including higher-order correlations
increases this number exponentially. Hence, an alternate and
more tractable reformulation is needed.

Our key insight is to formulate this as a self-supervised
learning problem. We are given a dataset of scan reports for m
entities over n scanners. Let p ∈ (0, 1) be a hyper-parameter.
Given a scan report Re for entity e of dimensionality n (one
entry per scanner), Mask Generator generates a binary mask
vector Me of dimensionality n where each component takes
the value of 1 with probability p. For example, if p = 0.1 and
n = 80, then we would expect 10% of the mask vector Me

to be 1. Given Me, Pretext Generator1 transforms the scan
report Re such that whenever Me[i] = 1, Re[i] is corrupted
by ‘swap noise’ – i.e., we replace it with the corresponding
entry from Re′ [i] where Re′ is a randomly chosen scan report
from the unlabeled dataset. Let Rce be the corrupted version
of Re based on Me. We design a pretext task that can output
the original scan report Re from the corrupted scan report
Rce. Note that we could generate virtually unlimited labeled
data by generating multiple corrupted versions for each scan
report Re. The learning is performed in two phases. First, we

pass Rce to an encoder that outputs an embedding z1e . Next,
we train a predictor (Mask Output Predictor) that takes z1e
as input and outputs Re. We perform joint learning where
the back-propagation improves both components. We can see
that to do well on this pretext task, the SSL has to design an
appropriate encoder and also learn the various dependencies
between the scanners. For example, assume that scanners
si, sj , sk exhibit high correlation between their responses and
Re[i] is corrupted. Then the predictor could learn to fix it
through the dependencies with Re[j] and Re[k].

B. Task 2: Temporal Scanner Dependencies
Pretext task 1 takes a single scan report Re and learns the

dependencies within them. The goal of pretext task 2 is to learn
the dependencies across time. Suppose that Rte and Rt+δe are
the scan reports for the same entity e for time t and t + δ.
We design an SSL task that takes Rte as input and produces
Rt+δe as output. In other words, we seek to predict the ‘future’
scan report from the current report. This task is useful for
two reasons. First, while it is often challenging to determine
whether an entity e is malicious from an early scan report,
it is usually much easier after a certain period has elapsed
(dubbed the stabilization period) [8]. Second, this pretext task
results in the predictor learning both the scanner and label
dynamics. If a scanner often flip-flops or lags behind another,
it will be learned by the predictor. Once again, we use a two-
step process where we pass Rte to the encoder to get z2e that is
then passed to the predictor (Temporal Report Predictor) with
an expected output of Rt+δe .
δ is a hyper-parameter and depends on the domain at hand.

The granularity of δ could be in hours for fast moving domains
such as Phishing URLs while it could be in days for other
domains. One may obtain the value of δ by analyzing a
time series of scan reports and identifying the appropriate
periodicity that captures major inflection points. For example,
[8] finds that after a malware file is submitted to VirusTotal
for four weeks, the scanners’ labels become stable and do not
exhibit any hazardous flips. Hence, the value of δ should be
much lower than four weeks. Similarly, works such as [9] and
our analysis for VirusTotal reports for URLs show a delay
∆ in updating VirusTotal labels due to its non-proactive pull
method. Hence, one should set δ ≥ ∆.
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C. Task 3: Temporal Prediction Consistency

Let Rte, R
t+δ
e , Rt+2δ

e , . . . be a time series of scan reports for
the same entity e. For example, these could be the reports for
the same entity taken every δ = 6 hours. Recall that pretext
task 1 learns the scanner dependencies, and pretext task 2 seeks
to predict the future scan report from the current one. A useful
additional constraint is to ensure that the embeddings for the
same entity across consecutive timestamps must be sufficiently
similar so that a predictor is likely to make the same prediction
for each of the scan reports in the time series. This constraint
is motivated by the fact that the benignness/maliciousness of
an entity does not change as long as δ is relatively small. If
the entity is malicious, we wish to learn embeddings such that
the predictor can provide consistent predictions for that entity
across the time series. Similarly, if the entity is benign, we
would expect the predictor to give the same label consistently
across the time series. By ensuring that the embeddings are
similar across time, the predictor that we train will be able
to provide accurate and early predictions. This is achieved
through consistency loss that penalizes two temporally con-
secutive embeddings for Rt+δe , Rt+2δ

e based on their Euclidean
distance. Embeddings that are farther are penalized more than
those that are closer together.

D. Embedding Harmonization via Multi-Task Learning

In a typical SSL setting, one designs a single pretext task
and uses the learned encoder for computing the embeddings.
However, the complexity of the cyber security domain in terms
of scanner dependencies and temporal dynamics precludes this
simple approach. Instead, as discussed before, we design three
inter-related pretext tasks, each of which focuses on different
yet relevant facets of the problem. Each of these tasks takes
a scan report Re as input and uses an encoder to output an
embedding ze that is used by the predictor of the individual
pretext task. This creates a new challenge of harmonization
where we strive to constrain the individual encoders to learn
embeddings that are useful across the tasks.

This is achieved through the use of multi-task self-
supervised learning. We seek to learn each of these three tasks
simultaneously and force the individual encoders to share the
knowledge across these tasks. Intuitively, we learn a shared
representation between the tasks enabling it to generalize bet-
ter by ignoring data-dependent noises. Even though the tasks
are sufficiently different, they also share several commonalities
that result in increased efficacy of learning shared represen-
tations and thereby achieve superior prediction accuracy than
training task-specific models individually. We use the same
model architecture for the encoder for all three tasks. We
use soft parameter sharing where each of the encoders has
its own internal parameters. However, we try to minimize the
`2 distance between the parameters to encourage them to be
similar. The parameters of the encoders are weakly tied based
on regularization so that they do not stray widely. Overall,
the self-supervised training is performed without any labeled
data resulting in a generic encoder that takes a scan report and
produces an embedding.

VI. PUTTING IT ALL TOGETHER

In Section IV, we propose a generative model that learns
the latent variables for each scanner. In Section V, we design
self-supervised learning tasks to learn effective embeddings. In
this section, we describe how to use these learned embeddings
to tackle various downstream problems. For the sake of
concreteness, we focus on the problem of malicious entity
detection. Given a scan report Re, our goal is to output whether
the entity e is malicious or benign as early as possible.

We focus on two key scenarios – one where there is
limited labeled data available, and another with no labeled
data available. Overall, our solution approach is based on the
pre-train and fine-tune paradigm. We use the generative model
and the SSL tasks to learn a good encoder in the pretraining
step. In the fine-tuning step, we leverage the encoder and its
embeddings for early and accurate detection.

A. Scenario 1: Limited Labeled Data

As we shall show in the experiments, it is possible to
reduce the required amount of labeled data using the proposed
embeddings as they encode some domain knowledge. We
consider a scenario with insufficient labeled data to train a
fully supervised model either on the original scan reports or
their embedding counterparts. This falls under the realm of
semi-supervised learning, where the goal is to train a more
generalizable classifier than one that is trained only on the
labeled data. Our proposed approach is based on [28].

Let DL be the set of labeled data. Let Re ∈ DL be
a scan report, and ye be the corresponding label (such as
whether e is malicious or benign). For each Re ∈ DL, we
generate K masks m1

e,m
2
e, . . . ,m

K
e using the mask generator

from pretext task 1 with p = 0.05 – in other words, 5%
of the mask vectors will have a value of 1 and will cause
corruption of Re. We corrupt Re using the masks to obtain
Rce = {Rc1e , Rc2e , . . . , RcKe }. Our key insight is that the label
for both Re and each of the corruptions have to be the same.
Hence, we pass the original and corrupted scan reports, Re
and Rce, to the encoder to get the respective embeddings ze
and Zce = {zc1e , zc2e , . . . , zcKe }. We train a predictor by passing
ze and Zce with ye as the expected output for each of them.
Let the predictions be ỹe and Ỹce = {yc1e , yc2e , . . . , ycKe }. We
use cross entropy loss between the true label ye and the
predicted label ỹe. We apply the consistency loss between ỹe
and Ỹce which penalizes when the predictions for the original
scan report and its corruptions diverge. We then update the
parameters of the predictor by back-propagating both the
supervised and consistency loss. This process is repeated for
each Re ∈ DL. In summary, our solution leverages both
the learned embeddings and the first pretext task to learn a
supervised classifier. We observe that our classifier with as
little as 100 labeled data achieves the same performance as
a fully supervised classifier requiring an order of magnitude
more data.
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B. Scenario 2: No Labeled Data

This is a challenging scenario where we have to perform the
detection of malicious entities without any labeled data. We
rely on the following insight – while it is hard to predict the
maliciousness of an entity based on the early scan reports,
it is often much easier to predict them based on the scan
reports after the stabilization period [8]. In fact, one could
use relatively simple predictors to achieve high accuracy for
the late stage scan reports. While there have been a handful of
unsupervised models for detecting malicious URLs [10], [23],
they often do not achieve good results for early detection. We
address this conundrum through the predictor for the second
pretext task that can generate the future scan report.

Let Rte be the current scan report while Rt+δe be the output
of the predictor of the second pretext task. Let zte and zt+δe be
their corresponding embeddings. Let z̃e be the concatenated
vector [zte, z

t+δ
e ]. As a pre-processing step, we compute the

concatenated embeddings z̃e for all entities. Let Z be the set
of concatenated embeddings for all entities.

Training an unsupervised model only based on Rte or zte
would result in sub-optimal performance. Instead, we follow
a three-step process for boosting knowledge transfer from
pretext tasks inspired by [30]. First, we cluster all the vectors
z̃e ∈ Z into two clusters that intuitively correspond to mali-
cious and benign, respectively. Let C1 and C2 be the cluster
centroids. Second, for each z̃e, we assign it to one of the
clusters based on their proximity to C1 and C2. Finally, we
train a new predictor that takes embedding as input and outputs
the cluster assignment. Specifically, the model is trained over
the set {(zte, ce)} where zte is the embedding of the current
scan report Rte and ce is the cluster assignment. In other words,
we train a supervised model for predicting the cluster that an
embedding must belong to. Our experimental results and a
number of prior work including [30] show that this approach
works well in the presence of an appropriately trained encoder
which is the case in our setting. Once we obtain the two
clusters, we could identify the malicious cluster in one of two
ways. If one expects the number of benign entities to be larger
than that of malicious entities, then the larger cluster would
correspond to the benign entity cluster. Alternatively, we could
sample a small number of entities (such as 1-5) from either
of the clusters and verify them with some external repository
(such as PhishTank or URLhaus) or obtain the appropriate
label from the domain expert.

VII. EXPERIMENTS

We conduct extensive experiments to showcase the general-
ity and efficacy of SIRAJ. The code for SIRAJ can be found
at https://github.com/qcri/SIRAJ.

A. Data Collection

In contrast to prior works that focus on a particular type
of entities, the generality of our approach enables us to
conduct experiments over four types of entities – phishing
URLs, malware URLs, malware files, and blacklisted IPs. The
statistics of the datasets can be found in Table I. Recall that

an entity may have multiple scan reports corresponding to
different scanning time points.
Malware Files. We use the data collected from [8] for our
experiments. This data consists of two partitions. The ‘main’
dataset contains 14,423 files and their daily labels of 65
scanners from VirusTotal over a period of one year (unlabeled
main). The authors submitted files that were ‘fresh’ and were
submitted to VirusTotal for the first time. The ‘auxiliary’
dataset consists of 356 files collected that were manually
verified by the authors. We use the unlabeled main dataset
to train our generative and self-supervised models and use the
auxiliary dataset for fine-tuning and evaluation.
Phishing and Malware URLs. We collect three different
datasets for pre-training, fine-tuning and final evaluation. Our
data collection process is inspired by the data collection
procedure in [8] for malware.

Pre-Training. Malicious URLs are often short lived as it is
economical to create new URLs [33]. Hence, it is important
to track the change in scan reports much more frequently.
Instead of using the 1-day granularity for malware collection,
we collect hourly scan reports for URLs. Our institution has
subscribed access to VirusTotal URL feed, which contains all
the URLs submitted to VirusTotal every day along with the
submission timestamps and the corresponding scan reports.
This unlabeled data is used to train the generative and self-
supervised models for both phishing and malware URLs.

Fine-Tuning. For phishing URLs, we use PhishTank (PT),
a collaborative website for verifying Phishing URLs. Users
submit suspected Phishing URLs to PT that are then verified
and voted upon by other users. We implement a crawler to
collect the newly submitted URLs to PT. We filter out invalid
URLs (e.g., malformed URLs) and then immediately submit
them to VirusTotal, and collect the scan reports. We categorize
a URL as fresh if the first scanned time in VirusTotal is
the same as our submitted time. Almost 54% of the URLs
submitted to PhishTank are categorized as fresh. For these
fresh URLs, we rescan them in VirusTotal every hour and
obtain a time series of scan reports. Simultaneously, we keep
track of their status in PhishTank. If the URL is verified in
PhishTank, we label the URL as Phishing. For malware URLs,
we use URLhaus that operates as a database of malware URLs
submitted by users. We collect VirusTotal scan reports for
newly submitted URLhaus URLs similar to PhishTank. We
observe that 60% of the URLs submitted to URLhaus are
categorized as fresh.

Since PhishTank and URLhaus are scanners in VirusTotal,
we exclude the responses from these scanners from the scan
report to avoid biases. This dataset is used to obtain the labels
for supervised and semi-supervised approaches.

Final Evaluation. We collect 3000 reports, corresponding to
3000 distinct URLs, over 7 days from the daily VirusTotal
URL feed using an online stratified sampling based approach
proposed in [34], [35]. The goal is to select a small set of
scan reports to be labeled by human experts. These URLs
(and domains) are distinct from the ones from the training
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TABLE I: Datasets Utilized in Experiments

Dataset for PreTraining Evaluation Dataset

Domain #Benign
Entities

#Malicious
Entities

#Benign
Scan Reports
(Training Set)

#Malicious
Scan Reports
(Training Set)

#Benign
Entities

#Malicious
Entities

#Benign
Scan Reports
(Testing Set)

#Malicious
Scan Reports
(Testing Set)

Phishing URLs 83K 381K 536 536
Malicious URLs 890K 29K 1.9M 263K 2141 239 2141 239

Malware Files [8], [31] 7226 7197 2.8M 2.8M 236 120 18.3K 12K
IP Blacklists [19], [32] 0.97M 2.6M 13.6M 36.4M 389K 131K 8.8M 3.2M
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Fig. 3: Comparing the performance of SIRAJ against diverse baselines for maliciousness detection task.

data. The scan reports used for training and evaluation did not
overlap temporally.

The ground truth for these scan reports is obtained through
manual inspection by cyber security experts. They follow
the same rubrics and look for signs of malicious URLs,
including but not limited to: distribution of malware binaries,
association with known indicators of compromises, domain
squatting (e.g., using a popular brand name within a domain
name), the presence in social engineering attacks (e.g. phishing
emails), mimicking the look and feel of benign websites (e.g,
login pages of banks or online stores), owner of the website,
historical registration records of the website, TLS certificates
associated with the website (if available), historical domain
access patterns available through passive DNS services and
the infrastructure in which the domain is hosted.
IP Blacklists. We use an unlabeled dataset collected by the
authors of [19] for our experiments. Overall, they monitor 157
publicly available blacklists and cover a wide variety of attack
vectors such as spam, malware, DDoS attacks, ransomware,
etc. The blacklists have a variety of update frequencies ranging
from 15 minutes to 7 days. We conducted our experiments over
the daily snapshot of the blacklists for the years 2019-2020.
Specifically, we use a form of temporal cross validation where
we use six months of daily snapshots for pre-training, one
month for fine-tuning and the following three months of data
for evaluation. We repeat this process for every contiguous 6
month duration. For example, we first pre-train on blacklists
from Jan-Jun 2019, then from Feb-Jul 2019 and so on.

We treat the output of BLAG [19] as a proxy for the ground
truth BLAG achieves the state of the art results with specificity
of as high as 99% and can also report malicious sources as
much as 9.4 days ahead of the best blacklist. Our rationale for
comparing SIRAJ against BLAG is to demonstrate that our
domain agnostic pretext tasks are able to automatically learn
the necessary knowledge and does not require expert input.
In contrast, BLAG requires sophisticated aggregation and IP

expansion based techniques designed by domain experts that
are specific to IP domain.

B. Experimental Setup

We implement two variants of our approach. When no
labeled data is available, we use the unsupervised method
(UNSUP) – the clustering based approach proposed in Sec-
tion VI-B. The SEMISUP variant handles the limited data
scenario by building a semi-supervised model that combines
both the labeled data and unlabeled data. We use a fixed
labeled data size of 100 scan reports corresponding to 100
distinct entities. We implement the encoder as a three linear
layer network with relu as the activation function. We use the
mean squared error function for measuring reconstruction (task
1) and consistency loss (task 3). For task 2, we use the cross
entropy loss function. Finally, we use the rmsprop optimizer.
We use a grid search to find the optimal value of p = 0.05 for
the hyper-parameter controlling mask corruption probability.

Baselines. We evaluate our approach against four diverse
and representative baselines. Similar to SIRAJ, each of these
baselines is data-driven and domain agnostic. They do not rely
on domain specific features and perform the prediction based
on scan reports. (i) BL-OPTTHRESH is a strengthened version
of the widely used threshold-based approach that determines
an entity as malicious if more than K scanners report it
as malicious. Instead of assuming an ad-hoc threshold such
as 1 or 3, K is chosen in an optimal manner to provide
the best results for the baseline. We assume the availability
of an oracle that can give us the F1-score for all possible
values of K. Then, we choose K that provides the highest
F1-score. (ii) BL-SUP is a supervised approach that trains a
deep neural network classifier with three layers using 10%
of the labeled scan reports. (iii) BL-GM is an EM-based
unsupervised approach proposed in [10] for malware files.
We adapt this approach for other domains by identifying the
appropriate values for the latent variables of the generative
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Fig. 4: Comparing the performance of our approach against diverse baselines for the early detection task.
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Fig. 5: Impact of Training Data Size on SIRAJ and its baselines. Legend same as that of Figure 4.

model through an exhaustive grid search that provides the best
results. Finally, (iv) BL-WS is based on the paradigm of weak
supervision [24]. Each scanner is modeled as a noisy classifier
through a labeling function. Then, we build a generative
model based on the commonalities and contradictions between
the outputs of the scanners. We then train a noise-aware
discriminative classifier using the same labeled data as that
of BL-SUP. For additional details, please refer to [24].

Due to unbalanced nature of the datasets, we use F-score to
measure the performance that balances precision and recall. It
is defined as 2×precision×recall

precision + recall .
Grouping Scan Reports. We focus on fresh files and URLs

where timely detection is important. We use the term ‘age’
to denote the duration between the current time and when
it is first seen in an aggregate service such as VirusTotal.
We group the entities based on their age deciles where each
decile consists of an exact 10% of the evaluation dataset. We
construct an equi-depth histogram [36] by sorting the entities
based on their age and the deciles correspond to the 10-th, 20-
th, . . ., quantiles respectively. The early deciles corresponding
to ‘fresh’ entities are often the most challenging.

C. Early and Accurate Malicious Entity Detection
First, we evaluate the performance of SIRAJ over two key

dimensions: (a) can SIRAJ provide accurate predictions? and
(b) can SIRAJ detect if an entity is malicious or benign early?

Figure 3 shows the ROC curve for SIRAJ and the baselines
when evaluated on a per-entity basis. In other words, if an
entity (such as an URL) has multiple temporally distinct scan
reports, we only use the earliest scan report. We then use
SIRAJ and the baselines to predict whether the entity is
benign or malicious. This provides a realistic measure on
algorithm’s performance for unseen entities. Both SEMISUP
and UNSUP achieve the best results outperforming a wide
variety of competing baselines including BL-SUP that had as
much as 10% of labeled scan reports (see Table I).

Our analysis finds that SIRAJ provides consistently high
performance across the age deciles. In contrast, the other
baselines perform poorly for highly fresh entities (those with
early deciles), and only catch up with SIRAJ for older entities.
We also find that UNSUP outperforms BL-WS which in turn
outperforms BL-GM. UNSUP uses a two-step process that
involves learning scanner dependencies and augmenting them
with pretext tasks. In contrast, BL-WS uses a fixed generative
model based on scanners’ overlap and conflicts followed by
a supervised noise-aware discriminative model using labeled
data. This shows that a careful design of pretext tasks plays
a major role in the outperformance of SIRAJ while also
reducing the reliance on the labeled data. Finally, the superior
performance of BL-WS over BL-GM shows that it is often
desirable to learn both the structure and parameters of the
generative model instead of fixing the generative model (based
on domain knowledge from experts) and just learning the
parameters. In fact, this design choice is what allowed SIRAJ
to transfer between multiple domains seamlessly.

Comparing SIRAJ against Domain Aware Baselines.
Both SIRAJ and the baselines are domain agnostic and do
not make any domain specific assumptions. We also compare
against a well-known domain-aware and unsupervised base-
line. Figure 3(d) shows the performance of SIRAJ against
BLAG. Recall that we used BLAG [19] as a proxy for ground
truth which means that it achieves perfect performance. We
can see that UNSUP and SEMISUP have a high degree of
agreement with BLAG. BLAG uses sophisticated techniques
such as aggregation and expansion (transforming IP addresses
into IP prefixes). We find that our pretext tasks – even when not
specifically designed for IP domain – are able to incorporate
some of these aspects. Specifically, the generative model and
pretext task 1 learn the scanner dependencies and use them
to perform sophisticated aggregation. Our pretext tasks 2 and
3 produce temporally consistent embeddings that are also
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IP prefix aware. We find that our encoder produces similar
embeddings for scan reports of two IPs from the same block
as compared to scan reports of two random IPs.
Early Detection of Malicious Entities. We next investigate
the performance of the various algorithms for early detection.
Given a set of entities E and a time duration δ, we obtain
a time series of scan reports for each e ∈ E for time periods
T, T+δ, T+2δ, . . . where T is the submitted time for entity e.
For example, if δ is one day, we get daily scan reports for all
entities. We then measure the F-score for the scan reports at
every time snapshot. If an entity e is malicious, an algorithm
should identify it as early as possible. Intuitively, this task is
much more challenging as the smaller δ is, the fewer scanners
would label the entity as malicious and its report also tends
to change significantly in the future. In contrast, as time
progresses past the label stabilization period [8] even a simple
threshold-based approach could give good results.

Figure 4 shows that our proposed approaches UNSUP and
SEMISUP provide consistently high performance as early as
6 hours for Phishing URLs and 24 hours for other types of
entities. In contrast, the competing baselines provide poor
results for the early scan reports, some of which eventually
catch up when δ increases. Two key aspects of this trend
are notable. The second pretext learns the temporal scanner
dependencies and is responsible for the good performance as
early as 6 hours for Phishing URLs. The third pretext task
based on temporal consistency keeps our approach’s perfor-
mance consistent across time. This is achieved by ensuring
that embedding of the scan reports of an entity e for two
consecutive timestamps RT1

e and RT2
e are closer to each other.

D. Ablation Analysis

Next, we conduct a series of ablation analyses to understand
the contribution of the significant components and tasks in our
approach. While we present the results of SEMISUP for the
limited data scenario, the results for UNSUP are similar.
Ablation of Components. SIRAJ is based on three com-
ponents: generative model, pre-training using self-supervised
learning, and fine-tuning. We compare three variants:
SEMISUP with all the components, NOGM that removes the
generative model, and NOSSL that removes all the three
pretext tasks. Figure 6 shows the results of this analysis. Not
surprisingly, SEMISUP provides the best results showing that
one needs both generative models and pretext tasks for best
performance. NOGM pays a limited penalty than NOSSL for
all domains showing that self-supervised learning accounts for
most of SIRAJ’s performance. NOSSL achieves more inferior
results for fresh entities due to the lack of pretext tasks 2
and 3 that imbues our model with temporal dynamics. The
performance of both variants is comparable for older entities.
Ablation of Pretext Tasks. In our next set of experiments, we
seek to understand the relative importance of the pretext tasks.
Specifically, we create three variants - ONLYT1, ONLYT2
and ONLYT3. As the name suggests, these approaches use a
single pretext task instead of all three. ONLYT1 seeks to learn
scanner dependencies in a single-time snapshot. ONLYT2

seeks to learn the temporal dependencies between scanners and
ONLYT3 seeks to ensure temporal consistency of embeddings
without directly learning the dependencies. Figure 7 shows that
all three pretext tasks are vital for achieving good performance
and the tasks are not redundant. The best performance –
especially for fresh entities – is provided by ONLYT2. This is
not surprising as this variant learns the temporal dependencies
that are essential for early detection. The performance of
ONLYT1 and ONLYT2 eventually overlap for older entities
when the temporal dependencies become less relevant. ON-
LYT3 performs the worst as it focuses on ensuring temporal
consistency of embeddings. However, as shown in Figure 4,
the steady performance of SEMISUP and UNSUP in early
detection is primarily due to the third pretext task.

E. Sensitivity Analysis

Next, we investigate the robustness of SIRAJ. We report
the results for SEMISUP as the results for UNSUP are similar.
Robustness to Corruption. Recall that we take the scanner
report as input and use the encoder to produce the correspond-
ing embedding. This embedding is then used for downstream
tasks. The primary goal of the embedding is to incorporate
the dependencies and temporal dynamics of scanners. An
appealing by-product is that our encoder based approach
also makes the embedding more robust to missing data and
corruption. Due to limited coverage, it is not unusual that a
scanner does not provide any response when queried about
an entity. Even when there is a response, its marking of the
entity may not be correct. All these contribute to missing
data and inaccurate/corrupted scan reports. We investigate
two sources of corruption – random and adversarial. In the
former, a small portion of randomly chosen scanner results
is converted to no response. In the latter, the scanner results
are flipped in an adversarial manner by focusing on the most
accurate scanners. Figure 8 shows the results for random and
adversarial corruption of 5% and 10% of the results. We can
see that when the corruption is random, SIRAJ’s performance
is not affected much. Our encoder is still able to produce
appropriate embeddings that paper over this issue. However,
the drop in performance is comparatively higher for adversarial
corruption. This drop is especially steep for fresh entities
where the responses of leading scanners are much helpful.
The performance of competing baselines dropped by as much
as 50% even for 5% random corruption justifying our design
choice of using encoders to learn an embedding.
Robustness to Low Quality Scanners. Scanning services
such as VirusTotal often have a large number of scanners with
varying quality and expertise. We investigate the performance
of SIRAJ when using a subset of top scanners. Specifically,
we compute the relative accuracy of the scanners and identify
the top-50% and top-25% scanners using a held-out auxiliary
dataset that is distinct from the scan reports used for training
and evaluation. Then, we re-run our experiments by subsetting
the scan reports containing the reports only for these scanners.
Figure 9 shows that SIRAJ performs best when the entire slate
of scanners are provided, and the variants SEMISUP-50 and
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Fig. 6: Ablation analysis of the major components in our proposed approach for the detection of malicious entities task.
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Fig. 7: Ablation analysis of the pretext tasks and on the detection of malicious entities task.
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Fig. 8: Robustness of our proposed approach against random and adversarial corruption of scan reports.
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Fig. 9: Performance of our approach using a subset of scanners.

SEMISUP-25 come second depending on the domain. It shows
that though low-quality scanners would inevitably introduce
noise and inconsistency to scan reports, our generative model
and pretext tasks could filter them out through dependency
and temporal dynamic analysis and keep useful information
to improve the overall performance. Due to its design, SIRAJ
works well to aggregate scanners of diverse qualities.

Impact of Training Data. A key selling point of SIRAJ is
its ability to achieve good performance with no (for UNSUP)
and 100 (for SEMISUP) labeled scan reports. Figure 5 shows
how the performance of SIRAJ and the baselines are impacted
when we vary the training data from 100 to 1000 scan reports
corresponding to distinct entities. As expected, the perfor-
mance of unsupervised approaches such as UNSUP, BL-GM
and BL-OPTTHRESH is unaffected. The use of embeddings
allows SEMISUP to achieve good performance even with 100
scan reports that slowly improves with additional labeled
data. In contrast, BL-SUP performs poorly when there is
insufficient labeled data. BL-SUP trails SIRAJ even with as
much as 1000 labeled scan reports. The dynamic nature of

cyber security often requires periodic retraining which further
exacerbates the effort needed for making BL-SUP work well.
Interestingly, BL-WS outperforms BL-SUP for two domains
(malware URLs and malware files) and closely trails in the
other two. BL-WS uses a two-step process that learns the
scanner dependencies using a generative model followed by
training a noise-aware supervised model using labeled data.
The outperformance shows the promise of learning dependen-
cies using generative models (also done by SIRAJ).

F. Miscellaneous Experiments

First, we investigate the beneficial nature of our embeddings
for the malware domain. While SEMISUP and UNSUP use
the embeddings, the supervised variant BL-SUP uses the raw
scan reports. Figure 10 shows the result of another supervised
variant SUPERVISED-VEC that is trained on the embeddings
instead of the raw scan reports. Since the labels for BL-
SUP and SUPERVISED-VEC are identical, any performance
boost is due to embeddings. SUPERVISED-VEC achieves better
performance than BL-SUP especially for fresh entities as the
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embeddings provide useful temporal information due to the
third pretext task.

Next, we vary the underlying algorithm for semi-supervised
learning. Specifically, we investigate three commonly used
variants. VIME [28] is the state-of-the-art approach for
self- and semi-supervised learning for the tabular domain.
DeAE [37] is based on denoising autoencoders that are
widely used for tabular data. Given a scan report, it learns
robust features by corrupting it (similar to pretext task 1)
and then forcing the autoencoder to output the denoised
scan report. Intuitively, this approach allows the model to
learn noise-resistant and robust features of the scan report.
Finally, TabNet [38] seeks to learn salient features through
sequential attention and performs unsupervised pre-training
and supervised fine-tuning based on an encoder-decoder ar-
chitecture. Figure 11 shows the results. SEMISUP substantially
outperforms each of the other variants even though they share
some design choices such as pretraining, masked learning, and
so on. This shows the overall performance of SEMISUP is due
to the careful construction of multiple inter-related ideas of
generative models and pretext tasks. Any subset of them (as
done by VIME, DeAE, and TabNet) is insufficient.
Retraining Models. Next, we investigate the impact of delay
in retraining our models. Figure 12 shows that delaying the
retraining has a different impact based on the domain. This
is especially detrimental to the URL domain, where the shelf-
life of URLs is short. The performance drops steeply after five
days while the file and IP domains show a limited drop even
after two weeks. Figure 13 shows the impact of the hyper-
parameter δ that influences pretext tasks 2 and 3. Given a
scan report Rte, pretext task 2 seeks to estimate Rt+δe . Not
surprisingly, the appropriate value depends on the domain. It
is as little as 6 hours for Phishing URLs while it is as much as
168 hours for malware files. SIRAJ could be re-trained within
a reasonable amount of time to cope with the dynamics of
scanners. For example, SIRAJ requires 129 minutes in Tesla
V100 GPU to train both encoder and classifier for 50 million
scan reports for the IP blacklists.

G. Interpretability Analysis

In this section, we conduct an initial analysis to understand
the source of outperformance of SIRAJ. A plausible hypoth-
esis is that SIRAJ relies on a small subset of well-performing
scanners and gives them high weights. However, this does
not explain the good performance of UNSUP which does not
use any labeled data and hence cannot automatically discern
the best scanners. Furthermore, BL-SUP had access to much
more labeled data than UNSUP and SEMISUP. If giving higher
weights to some scanners was the secret recipe, it would have
been identified by BL-SUP even if it used a simple linear
classifier (instead of a powerful DL based non-linear classi-
fier). Furthermore, modeling the scanner dependencies alone
is insufficient as UNSUP (and SEMISUP) outperform BL-GM
that uses a generative model to learn the dependencies. Finally,
the combination of generative model and labeled data in BL-
WS is also outperformed by UNSUP.

We conducted an additional investigation to understand the
latent space learned by the encoder of SIRAJ. SIRAJ uses
sophisticated techniques such as the generative model, multi-
task learning, self- and semi-supervised learning. There has
been limited prior work on interpretability analysis in each of
these topics and almost none that can be used in conjunction.
Hence, we consider a simplified setting by removing both the
generative model and the semi-supervised learning component
and focus on the pretext tasks and their impact on the encoder.

We randomly choose 5000 scan reports and compute the
corresponding embeddings. Given the high dimensional nature
of the embeddings, we use t-SNE [39] to reduce the dimen-
sionality to two. Furthermore, we choose the hyperparameters
of t-SNE to minimize perplexity [40]. A low-dimensional
projection of the latent space can be found in Figure 14.
The benign scan reports are marked in green while the
malicious ones are marked in red. We observe that the encoder
organizes the latent space into one or more clusters. Each
cluster is relatively homogeneous consisting of either benign
or malicious scan reports. This latent space also explains
why SEMISUP is able to outperform BL-SUP with 100 scan
reports by exploiting the cluster structure inherent in the
latent space. We did not find any unifying theme explaining
the clusters. The scan reports within each cluster had some
common properties that did not transfer across other clusters.
For example, one cluster could consist of scan reports where
scanners Si, Sj , Sk predict that the entity is malicious. Another
cluster consisted of scan reports where more than l scanners
changed their predictions within a time period of δ and so
on. Interestingly, the cluster behavior did not persist across
domains with different domains such as URLs, files and IPs
having very different latent space clustering and corresponding
semantics. A systematic investigation of the latent space is out-
of-scope for this paper and is a promising future work.

VIII. RELATED WORK

Aggregating Security Intelligence. The most popular ap-
proach for aggregating the scan reports is the unweighted
threshold strategy that marks the entity as malicious if the
number of positive labels is more than a heuristically chosen
threshold [6], [2], [4], [41], [42], [43]. The thresholds are arbi-
trarily chosen and could vary from 1 [2], [3], [4], 2 [5], [6], and
5 [7]. However, this approach is limited as it ignores different
qualities of sources, including coverage and accuracy [19],
[44]. There have been a few recent efforts to measure the
qualities of different intelligence sources [44], [45], [29], [8],
[9], [46], [11] or to smartly aggregate different sources with
consideration of qualities [19], [10], [47], [48]. Ramanathan
et al. proposed a system, BLAG, to better aggregate multiple
IP blacklists for more coverage and improved accuracy by
leveraging a recommender system [19]. Each of the works
described focused on aggregation for a specific type of intel-
ligence source (e.g., malware [10], [49], [47] and IP [19]).
Instead, we propose a generic approach that can be applied to
aggregate any type of intelligence source.
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Fig. 14: Visualization of the latent space learned by SIRAJ using the Pretext tasks.

Machine Learning based Detection of Malicious Internet
Resources. Attackers increasingly utilize Internet resources
for short time periods and dispose of them afterward. Hence,
recent research efforts attempt to detect or predict malicious
resources early. These efforts often rely on supervised ma-
chine learning algorithms with high quality ground truth on
malicious URLs [12], [5], [13], [14], malicious files [15], [16],
[17], [18], [50] or malicious IP addresses [19], [20] from threat
intelligence reports. Other approaches rely on a threshold that
results in either excessive false positives (low threshold) [18],
[12] or false negatives (high threshold) [16], [50]. SIRAJ
could be utilized to improve the quality of the ground truth and
subsequently, the performance measurements. Recently, some
efforts such as Attack2vec [51] and Log2vec [52] have used
an embedding based approach for understanding the evolution
of cyber attacks and detecting malicious enterprise log events
recorded from attacks respectively.

Dependencies and Dynamics for Pretext Task Design. There
has been extensive work on understanding the life-cycle of
malicious entities and dependencies and dynamics exhibited
by the scanners. These insights inspired the design of our
pretext tasks. Most of the empirical analysis focuses on a
specific domain such as phishing [9], [33], [53], malware [8],
[54], [55], [56], and IP blacklists [57], [53], [58].

Modeling Noisy Scanners with Generative Models. Gen-
erative modeling is a principled approach for handling noisy
labels used in the crowdsourcing domain, where the response
of a worker for a task is considered as a noisy label [59].
Increasingly sophisticated generative models [60], [61] that
consider worker and task-related parameters (such as sensitiv-
ity and specificity of the worker, task difficulty) have been pro-
posed. Unfortunately, a direct application is not suitable for the
cyber security domain as the scanners exhibit low false positive
rates and high false negative rates. We are aware of just two

prior works [10], [23] on generative modeling for aggregating
VirusTotal scan reports. A related work Sakib et al. proposed
a mathematical model to find the optimal combination of
malware scanners for the best detection accuracy with the
consideration of dependencies among scanners [49]. Our work
differs in two crucial aspects. First, we do not assume that
the generative model is pre-specified. Second, unlike [10],
[23], we do not assume scanner outputs are conditionally
independent given the maliciousness of the entity. Instead,
we use a data-driven approach for learning the dependencies.
Weak supervision [24] based approaches learn a specific type
of generative model based on scanner overlaps and conflicts. In
contrast, we learn a more expressive dependency model [26].

IX. CONCLUSION

We propose SIRAJ, a unified framework that can aggregate
the scan reports of diverse domains such as malware files,
phishing URLs, malware URLs, and malicious IPs. We adapt
recent innovations in generative modeling and self-supervised
learning to ensure that it can work well even when labeled data
is scarce or non-existent. Another significant contribution is
the design of three pretext tasks that are carefully constructed
to learn scanner dependencies and their temporal dynamics.
Our experimental evaluation shows that our approach works
well across multiple domains and can be fine-tuned for various
downstream tasks and robust to both random and adversarial
corruption. SIRAJ can be used both to generate high quality
ground truth for supervised approaches that detect/predict
attack vectors, and to compile high-quality blacklists of attack
vectors early in their life cycle to minimize the damage caused.
It is our belief that our work will trigger more research in
generative modeling, pretext task design, and the development
of unified frameworks that can work for multiple domains
instead of being siloed into individual domains.
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“Snorkel: Rapid training data creation with weak supervision,” in
Proceedings of the VLDB Endowment. International Conference on Very
Large Data Bases, vol. 11, no. 3. NIH Public Access, 2017, p. 269.

[25] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal Pro-
cessing Magazine, vol. 21, no. 1, pp. 28–41, 2004.

[26] S. H. Bach, B. He, A. Ratner, and C. Ré, “Learning the structure of
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