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Abstract. In this paper we investigate on detecting opinion spammer groups through analyzing how users interact with each
other. More specifically, our approaches are based on 1) discovering strong vs. weak implicit communities by mining user
interaction patterns, and 2) revealing positive vs. negative communities through sentiment analysis on user interactions. Through
extensive experiments over various datasets collected from Amazon, we found that the discovered strong, positive communities
are significantly more likely to be opinion spammer groups than other communities. Interestingly, while our approach focused
mainly on the characteristics of user interactions, it is comparable to the state of the art content-based classifier that mainly uses
various content-based features extracted from user reviews. More importantly, we argue that our approach can be more robust
than the latter in that if spammers superficially alter their review contents, our approach can still reliably identify them while
the content-based approaches may fail.
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1. Introduction

In recent years there has been a rapid and growing interest in opinion spamming [26,28,29,34,41,45,
49]. Opinion spamming refers to malicious activities that aim to influence normal users’ decisionmak-
ing for profit. While a number of methods have been proposed to detect opinion spams, most of them
focus primarily on developing pure content-based classifiers [11,29,34,45,49]. The basic idea behind
these approaches is to detect opinion spams through the analysis of review contents. These content-
based classifiers can be limited for several reasons. First, content-based classifiers tend to be domain
specific. A spam classifier designed for one domain (e.g., travel reviews) is often hard to be applied to
another domain (e.g., book reviews) [34]. Second, spammers can easily manipulate review contents to
avoid detection. For example, if duplicated text reviews are considered to be spams, spammers may sim-
ply paraphrase the contents. Third, while most content-based classifiers generally require ground truth
labels for training, it is often hard to obtain for real world datasets. Some prior research used human
experts to manually label data. However, given its high cost, it is impractical to do so reliably for large-
scale datasets. In this paper we explore an alternative approach by examining what we call promotional
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opinion spammers through the analysis of user interactions. Promotional opinion spammers refer to at-
tackers who try to improve the influence of their opinions by malicious artificial boosting. For example,
many review systems employ some sort of reviewer/review ranking systems (e.g., a top reviewer list
on Amazon, most helpful reviews on Amazon, or most recommended reviews on Yelp). It is believed
that people tend to trust highly ranked reviews much more than others [4]. We thus hypothesize that
spammers would seek to boost their ranks in order to increase the impact of their reviews.

To boost their rankings, spammers need to collect significantly more positive responses than negative
ones. For example, the rankings of reviews and reviewers on Amazon are based primarily on the number
of helpful votes received. Since multiple votes from the same user on one review are often counted as
one vote, spammers need to boost their rankings by gathering positive votes from different users (i.e.,
collusion). Therefore, they may need to collaborate to express positive responses to each other. We thus
hypothesize that such malicious artificial boosting activities would eventually lead to constructing com-
munities in which spammers are strongly positively connected with each other through review-response
interactions (e.g., votes and text replies on reviews); similarly, spammers may collaborate to express neg-
ative responses to competitors. We thus hypothesize that malicious demoting activities would eventually
lead to strong negative connections from spammer groups to competitors.

In this research, our primary research question is whether we can detect opinion spammer groups
through analyzing users’ interaction patterns. Note that normal users may also form natural communi-
ties based upon their genuine similar interests [8]. We thus focus mainly on strongly connected com-
munities. This is because we believe that spammer communities have distinguishing characteristics in
terms of structures and the strength of their relationships. Indeed our results showed that users in stronger
communities are more likely to be involved in spamming behavior than those in weaker communities.

Our work is grounded in the context of a review ecosystem on Amazon. Previously, we identified
implicit communities with differing strengths through review/response activities on Amazon [8]. Here
we further explore the correlation between the strength of communities and spammicity and moreover,
the spammicity of positively and negatively connected communities via sentiment analysis. The intuition
behind sentiment analysis is that: if a user has an unusual positive or negative relationship with another,
they may post fraudulent positive or negative responses to each other’s items and/or reviews to boost or
demote the reputation of specific reviews or reviewers.

Generally speaking, our approach is based on 1) discovering strong vs. weak implicit communities by
mining user interaction patterns and 2) revealing positive (boosting) vs. negative (demoting) communi-
ties through sentiment analysis on user interactions. More specifically, our approach can be divided into
four stages. First, we build general user relationship graphs representing how users interact with each
other. Second, we derive the sentiment of each relationship by aggregating sentiments of all responses
between any two users and extract positive and negative relationship graphs from the general relation-
ship graphs to capture boosting or demoting behavior. Third, we assume that spammers need to group
and work collaboratively to post positive comments to each other to obtain a dominant position; thus
we extract strongly connected communities from positive relationship graphs, referred as the anomalous
positive communities in the following. Finally, we analyze the positive and negative relationships of the
discovered anomalous positive communities to identify their targets.

Our main contributions are summarized as follows.
(1) We propose a general unsupervised hybrid approach that is based on user interactions coupled with

sentiment analysis. To the best of our knowledge, this is the first attempt to identify opinion spammer
groups through analyzing users’ interactions rather than purely focusing on their review contents. A key
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advantage of our approach is that it can detect opinion spammers even when traditional content-based
approaches fail.

(2) We introduce a new angle of collusive spamming behavior that spammers deliberately build strong
positive communities to make their own opinions influential. We thus propose to explore community
structures and the strength of relationships (i.e., how much the relationships are likely to be built inten-
tionally) as spam indicators. We also investigate the positive and negative relationships from the strong
positive communities to find their positive and negative spam targets.

(3) We run extensive experiments over datasets collected from Amazon to evaluate the effectiveness
of the proposed approach. While doing so, we compare our approach with existing content-based clas-
sifiers. Our experiments show that even though our community-based approach differs markedly from
pure content-based approaches, it reaches the same level of accuracy as state of the art content-based
approach targeting at Amazon spam reviews.

The remaining parts of this paper are organized as follows. In Section 2, we review related work.
Section 3 describes the four stages in our approach. In Section 4, we describe our datasets and three
types of reviewers involved in our comparisons. Sections 5, 6, and 7 present our experimental results.
Finally, Section 8 discusses our results and concludes the paper.

2. Related work

There has been a lot of research on combating spams in the context of Web and Email, which can be
classified into two categories: content-based and link-based approaches [1,7,12–15,31,39,44]. Content-
based approaches analyze the content of the webpages including irrelevant contents, malicious urls,
and unsolicited commercial advertisements [6,13,17,31,44]. Link-based approaches, on the other hand,
specifically target to detect link-based web spams with which spammers try to boost their page rankings
and get popularity by building strongly connected page links. To do so, link-based approaches leverage
the properties of the link structure [7,39,50].

In recent years, there has been a growing body of research on a new type of spams, called opinion
spams [16,25,26,28,29,34,35,41,45,49]. Quite a few researchers and news medias have pointed out the
importance of opinion spam detection as opinion spams are prevalent in real review systems such as
TripAdvisor and Yelp [5,27,30,32,47]. For example, Ott et al. reported 15% of reviews in TripAdvisor
are spams [32], Dellarocas reported many book reviews in Amazon were written by book authors and
publishers [9], and Yelp admitted a quarter of submitted reviews might be spams [5].

Despite the high payoffs and urgency for opinion spam research, significant barriers remain: unlike
traditional spam analysis in the context of Web and emails, it is often hard to get ground truth labels for
opinion spam. Previous research thus employed different mechanisms to obtain ground truth labels.

Early work including [11,20,21,24,48] manually inspected reviews and extracted simple features. For
example, Jindal et al. classified reviews as spam/non-spam by detecting duplicate/near-duplicate re-
views. Li et al. employed 10 college students to manually label randomly chosen reviews as spam/non-
spam given a few intuitive features [23]. Then they introduced two semi-supervised methods to classify
unlabeled dataset given the labeled dataset. In their research, the authors observed four spam review
features and two spammer features based on which they classify unlabelled reviews and reviewers.

Similarly, prior research used manually labelled datasets to discover unexpected rating patterns [10,
11,21,24,38,40,48]. For instance, Liu et al. proposed an algorithm combining a temporal analysis and
a user correlation analysis to identify products under malicious ratings in e-commerce [25]. To do so,
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Liu et al. investigated whether rating changes dramatically or accumulatively over time. While their
approach can capture reviewers’ unexpected behavior, it depends largely on heuristics; which is often
domain-dependent and sometimes requires expert knowledge [28,29].

More recently, a few researchers generated ground truth labels by hiring human experts to manually
label reviews [28,29] or by hiring online workers such as Mechanical Turkers to write spams [33,34].

For example, the dataset used in [33,34] includes 400 truthful reviews from Tripadvisor and 400
opinion spams generated by Turkers. In their work, content-based classifiers were developed by using
various linguistic features that differ truthful reviews from spam ones. While these classifiers have been
shown to be successful, it is not clear whether they can be applied reliably to other domains because
they are very content specific. For example, linguistic features of hotel reviews may be different from
those of electronics reviews. More importantly, there have been unresolved debates on whether datasets
generated by Turkers are indeed representative of actual spams in real world [28,29].

Alternatively, Mukherjee et al. generated ground truth by hiring domain experts who manually de-
tected spams using some expert predefined features [28,29]. The authors observed certain abnormal
spamming-like behaviors in their datasets with ground truth labels. Based on these observations, they
defined nine spam and spammer indicators and then developed an unsupervised classifier that exploited
the behavior distribution to detect spams.

While existing research discussed above present promising results, it has the following caveats. First, it
is often easy for spammers to avoid content-based spamming detection by making superficial alterations
to their reviews [19,43,46]. Second, pure content-based detection methods are often domain specific and
thus different classifiers are needed for different applications and task domains [33,34]. Finally, it is
often hard, if not impossible, to manually generate ground truth labels reliably for large-scale datasets
[28].

By contrast, our unsupervised approach is built based on the nature of spamming behaviors: it detects
spammers by analyzing user relationships and sentiments built through user interactions. We believe
it is much harder to fake user interactions than to rephrase their review contents; the same is true for
sentiment analysis in that spammers may change their contents to avoid spamming detection but not the
sentiments of their interactions. Because doing so would void the whole purpose of spamming.

3. The four-stage approach to discover opinion spammer groups and their spam targets

The aim of this research is to detect opinion spammer groups who artificially form implicit com-
munities through coordinated interactions to promote collaborators (i.e., positive spam targets) and/or
to demote competitors (i.e., negative spam targets). Our approach can be divided into four stages and
Fig. 1 depicts the general four stages through four sub-graphs, one sub-graph per stage. The four stages
are: 1) building a general user relationship graph in Fig. 1(a); 2) annotating the general graph through
sentiment analysis shown in Fig. 1(b); 3) identifying anomalous positive communities in Fig. 1(c); and
finally 4) detecting positive and negative targets of the anomalous communities shown in Fig. 1(d). In
the following, we describe each stage in more details.

3.1. Stage 1: Building general user relationship graphs

We focus on two types of users in a review system: reviewers and commenters. A reviewer writes
reviews about items and a commenter comments on the existing reviews. Both reviews and comments
may take a variety of forms including assigning scores, voting, and writing text. For instance, Amazon
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Fig. 1. The general idea of the proposed approach.

users can assign a star rating along with text reviews, post text comments, and vote on the helpfulness of
a review; while Urbanspoon users can vote on the helpfulness of a review but not post text comments.

Interactions are defined between two different users. More specifically, an interaction from user u to
user v is formed if u made a comment on v’s review or v’s comment. Note that users may build threads
of comments. In this paper, however, for simplicity reasons we will only consider the interactions made
by commenting on a review where most attentions are generally focused on. Also, we count multiple
comments from the same user on the same review as one interaction for the sake of fairness. In the
following, we investigate whether we can discover any anomalous patterns by focusing only on user
interactions.

We represent users and their interactions on a review system as a directed multigraph G = (U, E)

where U represents users (vertices) and E represents interactions (edges). Each edge −→
euv is a 2-tuple

(u, v) having direction from commenter u to reviewer v. A commenter has outgoing edges, and a re-
viewer has incoming edges in a graph. An out-degree of commenter u is the total number of edges from
u to other users and an in-degree of reviewer v is the total number of edges from other users to v. Note
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that multiple comments of user u on the same review of user v will count as one interaction and thus the
number of edges from u to v equals to the number of different v’s reviews which u commented on.

Generally, the in-degree of v essentially reflects v’s tendency of getting comments as a reviewer (i.e.,
how popular v is to get comments); while the out-degree of u reflects u’s tendency as a commenter
(i.e., how much u is willing to comment). For example, some user may write a lot of reviews and get a
lot of comments (high in-degree); while some user seldom writes reviews, but posts a lot of comments
(high out-degree). We further model a user’s tendencies as a reviewer and a commenter using incoming
and outgoing probabilities defined as a reviewer’s probability to get incoming edges and a commenter’s
probability to generate outgoing edges respectively.

Generally speaking, if we assume that there is no external relationship between users u and v, the
typical interaction between a commenter and a reviewer can be modeled as a random process. User u

simply stumbles upon v’s review by chance when browsing the system. He does not know v and seek
out v’s review deliberately. In other words, if there was no prior relationship from u to v, interactions
from u to v should happen randomly depending on u’s tendency as a commenter and v’s tendency as a
reviewer.

Accordingly, we can represent all users’ interactions as a random graph in which edges (i.e., interac-
tions) are randomly created following the incoming/outgoing probabilities of each user. As a result, we
get random graph Gr = (U, E′) in which the total number of all edges and each user’s degree distribu-
tions are the same as the original interaction graph. The random graph thereby preserves the same nature
of each individual as a commenter and/or a reviewer, which is independent of any prior relationships
between users. The main difference between the two graphs is that: all edges are randomly generated in
the random graph and so the number of edges between each pair of users in the random graph would be
different from the original graph.

Given the random graph model, we examine the real interaction patterns in a review system and see
how much they deviate from the random graph. We define users’ relationship and its strength based upon
the distance between users’ original interaction graph and its corresponding random graph. Intuitively,
the larger the difference between the real interaction and the random model is, the more likely the
relationships are artificially orchestrated. We measure such distances by building confidence intervals
based on the random graph.

Suppose that there is a total number of N edges in graph G. u and v are two vertices (users) on
G where u’s out-degree is O and v’s in-degree is I . So, without any relationship, the random chance
for an edge (interaction) from u to v is ρuv = (O/N) × (I/N). Let Xuv denote an event that the
number of edges from u to v in the graph G is ω. In our prior research [8], we discussed that Xuv

follows Bernoulli distribution: the expected mean is represented by Xuv and its standard deviation is
σ =

√
Xuv × (1 − Xuv). Given the mean and the standard deviation, the τ confidence interval can be

computed using α (= 1 − τ) and z scores. More specifically, for each τ , its upper and lower bounds are

Xuv ± zτ ×
√

Xuv × (1 − Xuv)/N , where zτ is a z-score for τ confidence interval. For example, α is
0.05 and z is 1.96 for the τ = 95% confidence interval. Here we only present a few critical details of the
process, but many have been omitted to save space.

If the random probability ρuv is larger than the upper bound, it indicates that u and v have less inter-
actions than expected in the random graph. That is, the interactions between u and v’s can be explained
by the random chance. Therefore, we only take into consideration the case that u and v have more inter-
actions than the random graph would generate; that is, the random probability ρuv is less than the lower
bound.

A formal definition of user relationship is given as follows.
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Definition 1. u has a relationship to v with τ confidence interval, if the following condition holds:

ρuv < θuv,

where ρuv is the probability for edge −→
euv to form in a graph G and θuv is the lower bound of given

confidence interval τ (i.e., Xuv − zτ × σ/
√

N).

Given Definition 1, we quantify the strength of a relationship in two ways. The larger difference
between ρuv and θuv, the less likely the interactions between u and v happen randomly with τ confidence,
and thus the more likely a strong relationship exists between u and v. The strength can thus be defined
with the difference between ρuv and θuv as follows.

Definition 2. The strength �1
uv of user relationship between u and v is

�1
uv = |ρuv − θuv|,

where ρuv is the probability for edge −→
euv to form in graph G and θuv is the lower bound, Xuv−zτ ×σ/

√
N .

Alternatively, the higher the value of τ with which the relationship is defined, the more likely a strong
relationship exists between u and v by Definition 1. The strength can thus be defined with the confidence
interval τ as follows.

Definition 3. The strength �2
uv of user relationship between u and v is

�2
uv = τuv,

where τ is confidence interval with which the relationship between u and v is defined.

The concept of strength of relationships can be naturally extended to communities. Concretely, edge−→
euv (in turn, user u and v) belongs to τ% community, if the strength of a relationship from u to v is τ .
The larger τ is, the higher strength relationships in a community have and thus the higher strength the
community has. It is important to note that in this research relationships belonging to the higher strength
of communities are excluded from lower ones to avoid multiple counting. For instance, if a relationship
is in 99.5% community, it is excluded from all lower strength of communities such as 98%.

Given the definitions above, we extract separate user relationship graphs for each τ community
in which vertices are users and edges are their relationships defined by interactions, as illustrated in
Fig. 1(a). Figure 2 presents examples of user relationship graphs in Amazon. As we exclude higher
strength of relationships from lower ones, relationships in Fig. 2(a) do not appear in Fig. 2(b).

3.2. Stage 2: Sentiment analysis on user relationships

In Stage 2, we apply sentiment analysis on user relationships. To do so, we aggregate the sentiments
of all comments between any pair of users and from these comments we derive the sentiment of each
relationship.

If comments are in the form of explicit votes, it is straightforward to obtain sentiment values. However,
in many systems including Amazon and Yelp, it is often unknown who made the vote as only aggregated
information is publicly available. For example, we may know a certain review got 50 positive votes total,
but we cannot know who made those votes. We thus focused only on text comments for the sentiment
analysis of a relationship. For this purpose, we employed a publicly available tool, AlchemyAPI [2]
which is known to present high accuracy on the identification of sentiments in various applications
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Fig. 2. Examples of user relationship graphs in Amazon (Books Datatset).

including reviews and tweets [37,42]. AlchemyAPI takes text contents as input, identifies the sentiment
of the text contents, and output a sentiment score ranging from −1 to 1. The positive/negative scores
represent the strength of positivity/negativity, and 0 means neutral.

There are many possible ways to derive the sentiment of a relationship from the sentiment of each
comment. Here we simply define the sentiment of a relationship from commenter u to reviewer v as the
average sentiment of all of u’s comments on v’s reviews. That is, to decide whether a relationship from
u to v is positive or negative, we analyze the sentiment of each comment from u to v and then aggregate.
We consider the relationship is positive, neutral, or negative if the average sentiment score is more than,
equal to, or less than 0 respectively. We then build sentiment relationship graphs in which sentiments of
all relationships are analyzed as illustrated in Fig. 1(b).

3.3. Stage 3: Identify spammer candidates by decomposing relationship graphs

In Stage 3, we identify spammers by analyzing community structures and the strength of relationships
using the sentiment relationship graphs generated in Stage 2. Note that we are interested in spammer
groups who work together, not individual spammers. To effectively spam for promotion and/or demotion,
spammers would need to obtain a dominant position (i.e., reviewers whose opinions are believed to be
trustworthy) in a system. One possible way to do so is to collect significant amounts of positive votes and
thus spammers would need to group and work collaboratively to post positive comments to each other.
Therefore, we extract only positive relationships from the sentiment relationship graph built in Stage 2,
and build positive relationship graphs as illustrated in Fig. 1(c).

Here we hypothesize that non-spammers would rarely post positive comments to spammers or spam-
ming reviews, thus it would be less likely for interactions from non-spammers to spammers to appear in
the extracted positive relationship graphs. On the other hand, spammers would deliberately write exten-
sive positive comments to each other and thus would exhibit strong interconnections in extracted positive
relationship graphs. This motivates us to further extract strongly connected structure from positive re-
lationship graphs. Accordingly, we cast the problem of detecting opinion spammers as the problem of
finding strongly, positively connected communities (Fig. 1(c)).

More formally, a strongly connected component G′ = (V , E′) is a subgraph of given graph G =
(U, E) such that 1) V ⊂ U ; 2) E′ ⊂ E; and 3) there is a directed path in each direction between every
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pair of vertices u, v ∈ V . In our context, we define a strongly positively connected graph G′ = (V , E′)
as follows.

Definition 4. G′ is a strongly positively connected graph if:

i) ∃ at least two vertices in G′, and
ii) G′ is a strongly connected component of positive relationship graph G, and

iii) G′ is maximal, i.e., � strongly connected component H ⊂ G containing G′.

Each positive relationship graph can have multiple strongly positively connected subgraphs and each
subgraph can be seen as a strongly positively connected community. These strongly positively connected
communities will be considered as possible spammer candidates, referred as anomalous positive com-
munities. Note that in Stage 1, we exclude stronger relationships, not users, from the lower strengths
of graphs. Consequently, some user may appear in multiple general relationship graphs. However, we
shall show that the behavior of users in different strengths of anomalous positive communities shows
significant differences from each other in the following sections.

3.4. Stage 4: Extracting the positive and negative spam targets

Based on the anomalous positive communities identified in Stage 3, the goal of Stage 4 is to identify
the positive and negative spam targets of these anomalous communities. To do so, in Stage 4, we focus
on the outgoing relationships of the anomalous communities and use the positive and negative outgoing
relationships extracted in Stage 2 (as illustrated in Fig. 1(d)). More specifically, based on the positive
outgoing relationship graphs extracted in Stage 2, we identify the positive targets of the anomalous
communities discovered in Stage 3; and based on the negative outgoing relationship graphs extracted in
Stage 2, we identify their negative targets.

4. Amazon datasets and three types of reviewers

4.1. Amazon datasets

Table 1 summarizes the datasets used in this research. They are collected from four popular categories
from Amazon: Books, Movies, Electronics, and Tools. In this research, we investigated the characteris-
tics of the discovered reviewers in each of the four categories individually and across the four categories,
referred as Across. As the same patterns and observations were found across all categories, in the follow-
ing we only report results on one individual category, Books, and Across datasets and primarily discuss
results from the Across dataset.

Table 1

Amazon Datasets

Category #items #reviews #comments #reviewers #commenters
Books 116,044 620,131 533,816 70,784 164,209
Movie 48,212 646,675 201,814 273,088 72,548
Electronics 35,992 542,085 128,876 424,519 72,636
Tools 22,019 229,794 32,489 151,642 21,977
Across 222,267 2,038,685 896,995 901,812 295,118
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Table 2

The number of discovered reviewers in each category

Relationship strength Across Books
99.5% 1174 1440
98% 1156 1340
95% 1173 1127
90% 2134 1208
80% 2444 1369
70% – 1447
60% 4455 1185
50% 1426 2321
40% – 2318
30% – 2424
20% – 2422
10% – 2421
0% 1427 2427

4.2. Three types of reviewers

We compare three types of reviewers: the discovered reviewers identified by our approach, the top
reviewers recognized by Amazon, and the total reviewers that include all reviewers appearing in the
corresponding datasets.

Discovered reviewers are those who appear in the strongly positively connected communities revealed
in Stage 3. Table 2 shows the number of reviewers in each strength of discovered communities. Again,
it is important to note that in this research relationships belonging to the higher strength of communities
are excluded from lower ones in the following results. Note that in the Across dataset, no community is
found with strengths 10% ∼ 40% and 70% and thus they are not presented.

Top reviewers come from the fact that Amazon recognizes a list of 10,000 top ranked reviewers
who demonstrate credible resources of high-quality reviews. Since Amazon is a well-known system, we
assume that most top reviewers are trustworthy.

Total reviewers refer to all the reviewers shown in the “# reviewers” column in Table 1.
The average numbers of reviews of the three types of reviewers are shown in Fig. 3: one line per

type. The x-axis represents the strength of the discovered communities in descending order (strongest
on the left); the y-axis represents the average number of reviews submitted. Since the top and the total
reviewers are fixed, their average numbers of reviews are constant and do not depend on the strength of
the relationship. For comparison reason, they are represented as flat lines: squared and dashed for the
top reviewers and the total reviewers respectively.

Figure 3 shows that on average our discovered communities and the top reviewers post more than 100
reviews while the total reviewers post less than 10 reviews. The latter result agrees with the results from
prior research: the majority of reviewers only writes a few reviews [47,48]. One important observation
from Fig. 3 is that both our discovered reviewers and the top reviewers are very active and more im-
portantly, our discovered reviewers are seemingly to be even more active than the top reviewers across
all the strengths. For instance, in the Across dataset, >300 reviews on average for discovered reviewers
vs. 150 for the top reviewers. Additionally, higher strength of communities (e.g., 99.5% and 98%) had
more reviews on average than those in the lower strength of communities (e.g., 0%). For example, in
the Across dataset, reviewers in 98% ∼ 99.5% communities had reviews >450 on average, but review-
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Fig. 3. The average number of reviews (RNUM) in each category.

Fig. 4. The average length of reviews (RLEN) in each category.

ers in a 0% community had reviews in 300–400 range on average. For the Book dataset, reviewers in
70% ∼ 99.5% communities had more reviews than those in 0% ∼ 60% communities.

We also measured the length of each review by counting the number of words in the review. Figure 4
shows the average lengths of reviews submitted by the three types of reviewers: one line per type. The
x-axis represents the strength of the discovered communities; the y-axis represents the average lengths
of reviews submitted. Similar to Fig. 3, for comparison reason, the lengths of reviews of the top and total
reviewers are represented as flat lines: squared and dashed respectively.

As shown in Fig. 4, on average the length of reviews submitted by the three types of reviewers do not
show significant differences ranging from 200 to 400 words except those in the 50% and 60% commu-
nities in Across dataset. This result agrees with the results from prior research: the distribution of the
lengths of reviews including spam and non-spam reviews do not show significant differences [20,34].
On the other hand, the reviews by the reviewers in 50% and 60% communities are relatively longer than
the reviews by other types of reviewers. One possible reason might be that the reviewers in 50% and
60% communities are active reviewers who not only post genuine reviews but also discuss items more
in detail, which will further be discussed in the following sections.



294 E. Choo et al. / Detecting opinion spammer groups through community discovery and sentiment analysis

5. Experimental results and analysis on discovering opinion spammer groups

In this section, we compare the behavior of the three types of reviewers. Our goal is to show that
although the discovered reviewers can appear to be as “helpful” as Amazon’s top reviewers (in terms of
positive vote ratio in Section 5.1), they are strong spammer candidates (in terms of verified purchase ratio
in Section 5.2 and various spammicity indicators in Section 5.3). We thus focus primarily on comparing
our discovered reviewers with top reviewers in this section.

5.1. Positive vote ratio (PVR)

One important assumption of this research is that opinion spammer groups would maliciously and
artificially boost their reviews to increase the impact of their reviews. As reviews marked as helpful can
often be more influential, we define the positive vote ratio (PVR) to measure how helpful the reviews
of the group appear to be. More specifically, the PVR for a reviewer is calculated as the percentage of
positive votes over the total number of votes the reviewer got; the group average PVR is calculated by
averaging the PVRs across all the reviewers in the group and it ranges from 0 to 1. The higher PVR is,
the more helpful the group’s reviews appear to be.

Figure 5 shows the average PVRs of the three types of reviewers. Again for comparison reason, the
average PVRs of all three types of reviewers are shown in the graph: one line per type. The x-axis
represents the strengths of the discovered communities; the y-axis presents the average PVR. The top
and the total reviewers’ PVRs are represented as flat lines: squared and dashed lines respectively as
their values do not depend on the strength of the relationship. As shown in Fig. 5, the PVRs of the
discovered reviewers are relatively high and in fact, they are close to the PVR of the top reviewers. That
is, their average PVR is close to 80% across the strengths of the communities. The only exception is that
60% community in the Across dataset has the lowest PVR around 70%. Both types of reviewers (i.e.,
discovered and top reviewers) have much higher PVRs than the total reviewers whose PVRs are closer to
55% for the Across dataset and 65% for the Book dataset. This indicates that the reviews of discovered
reviewers do indeed appear to be as “helpful” as those of the top reviewers.

Fig. 5. Positive vote ratio (PVR) in each category.
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Fig. 6. Verified purchase ratio (VPR) in each category.

5.2. Verified purchase analysis

Amazon would tag a review with “Verified Purchase” if the reviewer made a purchase through Ama-
zon. Given the amount of efforts and monetary involved in actual purchase, we hypothesize that spammer
groups are less likely to actually purchase the item than the non-spammers [18,22,28]. We therefore de-
fine the verified purchase ratio (VPR) of a reviewer as the percentage of verified purchase reviews over
the number of total reviews of the reviewer, and believe that the VPR is a good indicator for spammicity
[18,22,28].

Figure 6 shows the average VPRs of the three types of reviewers. The x-axis represents the strengths
of the discovered communities; the y-axis presents the average VPR. The top and the total reviewers’
VPRs are represented as flat lines: squared and dashed lines respectively as their values do not depend
on the strength of the relationship.

Interestingly, Fig. 6 shows that there was no difference between the top and the total reviewers in
terms of their VPRs. In other words, the top reviewers were no more likely to purchase the reviewed
item than normal users, while the former’s reviews are more helpful as shown in Fig. 5. As we expected,
our discovered reviewers, especially those in the 80% ∼ 99.5% communities, have lower VPRs than the
other two types of reviewers. In the Across dataset, the VPRs of the 80% ∼ 99.5% communities are only
about half as many as those of the other two types. We believe that this occurs because the reviewers
in the 80% ∼ 99.5% communities are more likely to be spammers as we will show in the following
sections.

Another interesting phenomenon is that in both Across and Books datasets, the 60% communities
show slightly higher VPRs than the other two types. Our hypothesis is that our discovered 60% commu-
nities include active yet non-spam reviewers who form natural communities based upon their genuine
similar interests [8]. This might also explain that the lengths of reviews by the reviewers in 60% com-
munities were relatively longer than other types of reviewers (Fig. 4). Specifically, the reviewers in 60%
communities might write more detailed reviews based on their actual purchase.

5.3. Spammicity analysis with spam indicators

We use nine content-based spam indicators suggested by the existing research [28–30] to examine
the level of spammicity of reviewers (i.e., how likely users are to be spammers) across our discovered
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Fig. 7. Contents similarity (CS) in each category.

communities. They will also be compared against other types of reviewers. All the nine spam indicators
range from 0 (non-spammers) to 1 (spammers). In the following we will describe each of the measures
used and will present the results in a series of plots where: the x-axis demonstrates the strengths of the
discovered communities and the y-axis presents the strength of the corresponding measure; and we have
one line per reviewer type. Again, the top and the total reviewers’ values are represented as flat lines:
squared and dashed lines respectively.

5.3.1. Content similarity (CS)
CS measures how similar the user’s reviews are, as spammers often copy their own reviews across

items. Following [28–30], we measure the maximum of pairwise content similarities of two reviews by
the same reviewer to capture the worst case. Figure 7 presents the average CSs of the three groups of
reviewers. Mukherjee et al. stated that the expected value of CS of spammers was 0.7 [28]. As shown
in Fig. 7, we observe that the CSs of reviewers in 80% ∼ 99.5% communities are over 0.7 in the
Across and the Books dataset. Note that there is a big drop between the 80% community and 60%
community, and the CSs of 0% community is very close the CSs of total reviewers. This result suggests
that 80% ∼ 99.5% communities are more likely to be spammers with much higher CSs than the lower
strength of communities.

5.3.2. Rating abused item ratio (RA)
RA checks whether a user posted multiple reviews with similar ratings on the same item, as non-

spammers post multiple reviews usually when her opinion changes. Following [28,29], we measure the
similarity by computing the difference between the maximum and minimum ratings of each reviewer for
an item; and we assume a reviewer abuses ratings, if he/she posts the similar ratings more than twice on
the same item. We then measured how many items are involved in rating abuse for each user. Figure 8
presents the average RAs of the three types of reviewers. In general, non-spammers are not likely to
involve in rating abuse. Indeed, RAs of reviewers in 0% ∼ 60% communities and top reviewers are
close to zero, whereas RAs of reviewers in 80% ∼ 99.5% communities range from 0.2 to 0.4.

5.3.3. Review duplicated items ratio (DUP)
DUP checks whether a user posts similar multiple reviews on the same item. Although DUP is similar

to RA, it focuses on review contents, not ratings. DUP can thus capture similar multiple reviews by a
spammer with multiple identifiers. Following [28,29], we assume that reviews are spams if the content
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Fig. 8. Rating abused item ratio (RA) in each category.

Fig. 9. Review duplicated items ratio (DUP) in each category.

similarity between two reviews on the same item is over 0.72, and measure how many items a user is
involved in review duplication. In general, non-spammers are not likely to involve in such activities.
Figure 9 presents the average DUPs of the three types of reviewers. Indeed, DUP of reviewers in 0% ∼
60% communities and top reviewers are close to zero, whereas that of reviewers between 95% and 99.5%
ranges from 0.1 to 0.4.

5.3.4. Maximum one day review ratio (MOR)
MOR measures how many reviews a user posted in one day compared with the maximum across

all reviewers, as a massive amount of reviews in one day often looks suspicious. In our dataset, the
maximum number of reviews per day were 95 (Books) and 96 (Across), which we can undoubtedly
say is suspicious amounts of reviews for a single day. Figure 10 shows the average MORs of the three
types of reviewers. Mukherjee et al. stated the maximum number of reviews per day was 21 in their
dataset, and the expected MOR of spammers was 0.28 and that of non-spammers was 0.11 (i.e., the
expected number of reviews in a day of spammers was 0.28 × 21 ≈ 5 and that of non-spammers was
0.11 × 21 ≈ 2) [28]. The maximum number of reviews per day was higher in our dataset than that
used in [28] and this produced a correspondingly different MOR. However, we found that the number
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Fig. 10. Maximum one day review ratio (MOR) in each category.

Fig. 11. First review ratio (FRR) in each category.

of maximum reviews in a day ranged from 7 (≈ 0.07 × 96) to 17 (≈ 0.18 × 96) for reviewers in the
80% ∼ 99.5% communities, which is more than the expected number of reviews per a day for spammers;
whereas it was 3 (≈ 0.03 × 96) for those in 0% ∼ 60% communities, which is similar to the expected
number of reviews per a day for non-spammers. It is interesting to see that the MOR of the top reviewers
was also relatively high, compared to the MOR of the total reviewers. One possible reason might be
that Amazon invites some top reviewers to get advance access to not-yet-released items and to write
reviews [3].

5.3.5. First review ratio (FRR)
FRR measures how many of user’s reviews are the first review for a item, as spammers often post

reviews early in order to maximize the impact of their reviews. Figure 11 presents the average FRRs of
the three types of reviewers. As shown in Fig. 11, the top and the total reviewers have very close FRRs
overall but for our discovered reviewers, we observe that FRR increases, as the strength of a community
increases. Note that this result may simply reflect the fact that reviewers in the higher strength of com-
munities are more active and thus are more likely to author the first review. This may also explain that top
reviewers also have relatively high value, compared to total reviewers in Books category. However, the
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high FRRs for reviewers in 80% ∼ 99.5% communities still reflect their spammicity, when combined
with other spam indicators.

5.3.6. Early time frame ratio (ETF)
ETF measures how early a user reviewed the item. The intuition behind ETF is the same as for the

FRR, because if not the first review, earlier reviews may have a bigger impact. Mukherjee et al. estimated
the appropriate threshold to decide whether the review is written early [28,29]. We employed the same
threshold (0.69), and measured the percentage of a user’s reviews that were written early. Figure 12
shows the average ETFs of the three types of reviewers. As shown in Fig. 12, we observe similar results
to FRR in that ETF increases as the strength of a community increases, especially for 80% ∼ 99.5%
communities.

5.3.7. Deviated rating ratio (DEV)
DEV checks the difference between a user’s rating and the average rating of other users on the same

item, as spammers often try to inflict incorrect projections which deviate from the common consensus.
We employed the same threshold of 0.63 used in [28,29] to decide whether a rating is deviated, and
measured the percentage of a user’s reviews that are deviated. Figure 13 shows the average DEVs of

Fig. 12. Early time frame ratio (ETF).

Fig. 13. Deviated rating ratio (DEV) in each category.
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Fig. 14. Extreme rating ratio (EXT) in each category.

the three types of reviewers. Note that DEV of the top reviewers is the lowest. This suggests that top
reviewers’ reviews are actually reliable or consistent with others’ perceptions, whereas most reviews by
reviewers in the 80% ∼ 99.5% communities deviate greatly from the common consensus. This deviance
reaches as high as 0.8 deviation for the 99.5% community.

5.3.8. Extreme rating ratio (EXT)
EXT measures whether a user’s rating is extremely high or low, as spammers are likely to post extreme

ratings while non-spammers post more moderate product-specific ratings. Since ratings range from 1 to
5 on Amazon, we consider 1 and 5 as extreme rating, following [28,29], and measured the percentage
of a user’s reviews having extreme ratings. Figure 14 shows the average EXTs of the three types of
reviewers. We observe that the EXTs of reviewers in 80% ∼ 99.5% communities are relatively high
ranging from 0.5 to 0.8, whereas those of reviewers in 0% ∼ 50% communities, total reviewers, and top
reviewers range from 0.4 to 0.6.

5.3.9. Review burstiness (BST)
BST measures the interval between a user’s first and last reviews, as spammers often post reviews in a

short period of time. Mukherjee et al. compared each reviewer’s history with an estimated threshold of
28 days [28,29]. The shorter the interval, the larger the burstiness. Burstiness was 0 if a reviewer has a
history equal to or longer than 28 days. Figure 15 shows the average BSTs of the three types of reviewers.
Note that top reviewers are expected to be valued customers who have a relatively long history with
high-quality reviews. Indeed, top reviewers have the lowest BSTs (close to zero) as shown in Fig. 15.
By contrast, we observe that reviewers in the 80% and 99.5% communities have rather high BST scores.
Recall that both the top reviewers and the discovered reviewers in the 80% and 99.5% communities have
high PVRs, but the BST score analysis suggests that the latter are likely to be spammers since they do
not have a long history but collect many positive comments in a short period of time to appear to be very
“helpful”.

5.4. Summary

In short, our findings from Verified Purchase Ratio (VPR) and the nine spammicity indicators show
that: there is a clear distinction in terms of VPR and each spammicity value between reviewers in the
80% ∼ 99.5% communities and those in the 0% ∼ 60% communities. Concretely, the behavior of the
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Fig. 15. Review Burstiness (BST) in each category.

former groups shows quite different patterns from the top and the total reviewers and tends to exhibit
strong spamming behavior (high spammicity). The behavior of the latter groups by contrast tends to be
similar to that of the total and the top reviewers (low spammicity). Generally speaking, as the strength
increases for reviewers in the 80% ∼ 99.5% communities, their spammicity increases. In other words,
reviewers in the higher strength communities (e.g., 99.5%) have a higher probability of being spammers;
whereas reviewers in 0% ∼ 60% communities tend to have low spammicity in general.

In sum, in this section we have shown that although the reviewers in our discovered communities ap-
pear to be as “helpful” as the top reviewers and much more helpful than the total reviewers, the strongly,
positively connected 80% ∼ 99.5% communities are indeed highly suspicious spammer groups; whereas
0% ∼ 60% communities are less likely to be spammers. This result suggests that there exist reviewers
whose reviews are maliciously endorsed to make them more influential. Indeed, prior researchers have
argued that votes from users are not reliable and easy to abuse [24,28].

6. Comparing to two state of the art spammer classifiers

In Section 5, we have discussed discovered reviewers have distinctive characteristics in terms of spam-
micity values. In this section we show the correlation between the strength of each community and
the probability of being spammers. Our goal is to suggest a way to incorporate distinctive characteris-
tics of different strengths of communities for spammer detection, and to show the effectiveness of our
community-based scheme. The most direct way to evaluate our approach is to compare our detection
process to the state of the art content-based classifier with Amazon ground-truth dataset. However, after
several attempts, we were unable to obtain access to Amazon datasets with ground-truth labels used in
previous research such as [28,29]. Therefore, we will compare our discovered reviewers against review-
ers classified as spammers by two state of the art classifiers: a linguistic model-based classifier proposed
in [34] and a spam indicators-based classifier proposed in [28].

6.1. Comparing to a linguistic model-based classifier

Ott et al. trained a series of machine learning models based on ground truth set including truthful
reviews extracted from TripAdvisor and spam reviews written by Turkers [34]. Given the high accuracy
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Fig. 16. Fake probability in each category.

reported in [34], we investigated whether their models can be directly applied to estimate the spammicity
of reviews on Amazon. Among their proposed machine learning models, we employed unigram Naive
Bayes Classifier given its high performance in [34]. Strictly following [34], a 5-fold cross validation
procedure was performed and the rest of details can be found in [34].

As Ott et al.’s approach focused on review contents, we used the Naive Bayes Classifier to calculate
a fake probability for each review and based on them, we measured the spammicity of discovered re-
viewers. More specifically, we define the fake probability of a reviewer as the average fake probability
of all of his/her reviews, and average over all the reviewers in a group to calculate the average fake
probabilities of the group. Figure 16 shows the average fake probabilities of the three types of reviewers.
The x-axis represents the strengths of the discovered communities; the y-axis presents the average fake
probability.

Figure 16 shows that in Across dataset, we see the fake probability increases as the strength of com-
munities increases. However, the average fake probability of top reviewers was also relatively high,
compared to that of total reviewers. This result is seemingly inconsistent with our assumption that top
reviewers are trustworthy. Figure 16 also shows that in Books datasets, we could not find any clear pat-
terns in terms of the fake probability when varying the strength of communities. Moreover, the fake
probabilities of the three types of reviewers are very close to each other, around 0.5.

To compare our classification results to that of the linguistic model-based classifier, we additionally
sort all reviewers based on the fake probability calculated by the linguistic model-based classifier in
descending order, and assume that top ranked reviewers are spammers and bottom ranked reviewers
are non-spammers. As previous work reported 15% spam ratio in TripAdvisor, we assume that top and
bottom 15% ranked reviewers can be classified as spammers and non-spammers respectively [32,34];
which is used for “pseudo ground-truth labels”. We believe this is a plausible approach without ground-
truth labels for spammers, as a reviewer will be more likely to be spammers if most of her reviews has
high probability to be spams, in turn, resulting the high average fake probability [28]. Then we compare
the correlation between discovered reviewers and the “pseudo ground-truth labels”.

Figure 17 shows modified ROC curves by varying community strengths as thresholds to define spam-
mers. Here we assume that reviewers in communities with strengths greater than or equal to τ are spam-
mers; those in communities with strengths less than τ are non-spammers. For example, a point labelled
as 90% represents that we assume reviewers in 90% ∼ 99.5% communities are spammers and those
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Fig. 17. Modified community-strength based ROC curve using the linguistic-based classifier.

in 0% ∼ 80% communities are non-spammers. Like normal ROC curve, the x-axis represents the false
positive rate and the y-axis represents true positive rate. Here in our modified ROC curve, each point
represents true positive rate against false positive rate given τ strength as a threshold. As shown in
Fig. 17, our community-based detection yields all points in the bottom right corner. This indicates that
reviewers discovered by our approach seem to be in discord with reviewers detected by the linguistic
model-based classifier. Accordingly, these results might suggest that our approach fails to detect the
spammers identified by using the Linguistic Model-based Classifier.

However, we argue that these results are due to 1) the fact that their spam reviews are written by
Turkers; and 2) the difference between the linguistic features of Amazon and TripAdvisor reviews.
In other words, the linguistic features that work for TripAdvisor reviews may not work for Amazon
ones. More specifically, the Naive Bayes Classifier proposed in [34] extracts features that would most
significantly differ spam reviews from the truthful ones based on the word frequency. For example, in
their data the words “expensive” and “accommodations” tend to appear in truthful reviews seven and
nine times more often than in spam reviews respectively. However, while “expensive” can appear in
both truthful and spam reviews in multiple domains including our Amazon datasets, “accommodations”
may be very less likely to be shown in some domains such as book and movie reviews. Indeed a few
researchers suggested the linguistic model-based classifier does not work well in some applications
including Yelp [30].

To summarize, our results suggest that the linguistic model-based classifier as a form of content-based
classifiers, tends to be domain specific. In order to verify our community-based scheme against content-
based classifiers, we thus focus on a content-based classifier developed for Amazon datasets, which will
further be discussed in the following section.

6.2. Comparing to a spam indicators-based classifier

Mukherjee et al.’s spam indicators-based approach is the state of the art content-based classifier shown
to have high accuracy over Amazon dataset with ground truth labels [28]. To compare our classification
results to that of their spam indicator-based classifier, we generated a “pseudo ground truth labels” by
applying the classifier to our Amazon dataset. In particular, following [28,29], we assume that when
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Fig. 18. Modified community-strength based ROC curve using the spam indicators-based classifier.

reviewers are ranked in descending order based on the sum of nine spammicity values (Section 5.3),
top and bottom 5% ranked reviewers can be classified as spammers and non-spammers respectively in
an unsupervised setting. We then show that our community-based approach reliably identifies opinion
spammers even when pure content-based classifiers fail, and achieves the same level of accuracy as state
of the art pure content-based classifier.

To measure the accuracy, we again plot the modified ROC curve by varying different strengths as
thresholds to define spammers. Figure 18 shows the modified community-strength based ROC curve
where the x-axis represents the false positive rate and the y-axis represents true positive rate. Each point
represents true positive rate against false positive rate given τ% strength as a threshold. Similar to the
analysis in Section 6.1, we assume that reviewers in communities with strengths greater than or equal to
τ are spammers; those in communities with strengths less than τ are non-spammers.

When 80% ∼ 99.5% are used as thresholds, we observed there were no false positives, as shown
in Fig. 18. This means that all the reviewers in 80% ∼ 99.5% communities appeared in the top 5% of
ranked reviewers (i.e., spammers); which is expected, as their spammicity values were high on average as
discussed in Section 5.3. Note that the larger threshold τ is, the lower true positive rate is. For example,
when 99.5% is used as threshold, true positive rate is 0.2 in Across dataset. This is because there were
many false negative results including reviewers in 80% ∼ 98%.

On the other hand, when we use 60% or less strengths as a threshold, the false positive rate dramat-
ically increased (over 0.7), meaning that 0% ∼ 60% communities are likely to be non-spammers. The
number of false positive results thus increased, as more reviewers in 0% ∼ 60% communities are clas-
sified into spammers by using 60% or less strengths as a threshold. In such a case, the number of false
negative results would be small, resulting in higher true positive rate.

Note that we get the best result (i.e., 0% false positive rate and high (close to 100%) true positive
rate), when 80% is used as a threshold; and the classifying results get worse with thresholds lower than
80%. This implies a clear distinction between reviewers in 80% ∼ 99.5% communities and those in
0% ∼ 60% communities. This lends support to our claim that such distinctive characteristics of different
strengths of communities can be used to distinguish spam communities from non-spam communities.

In short, our findings from the modified community-strength based ROC analysis can be summarized
as follows. First, our analysis suggests that while strongly positively connected communities may be
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naturally constructed with different strengths, communities with a strength higher than 80% are strong
spammer candidates. Second, we have shown that there exists a great correlation between the strength
of communities and content spammicity. In fact, we have shown that we could achieve 0% false positive
rate and nearly 100% true positive rates using 80% as a threshold. However, by no means do we claim
that our classification using 80% as threshold is almost perfect with 0% false positive rate and nearly
100% true positive rates; as the accuracy was measured by comparing to the pseudo ground truth set. The
correctness of accuracy measurement in our modified ROC analysis may thus depend on the accuracy
of the pseudo ground truth set. Nevertheless, we showed that the strength can be used an indicator
to distinguish spam communities from non-spam communities and it can achieve the similar level of
accuracy to the state of the art content based classifier.

On the other hand, we argue that it is hard to evade our community-based scheme as spammers essen-
tially need to build these strongly, positively connected communities to make their opinions influential;
whereas spammers can easily fake their content features (e.g., reword their contents for lower content
similarity value) to evade detection by content-based classifiers. Furthermore, it is also important to note
that the discovered communities not only include reviewers but also commenters who may not write
any spam reviews. Existing pure content-based approaches will not be able to discover such supporting
commenters, though they are also suspicious and indirectly contribute to opinion spams. In other words,
our approach can discover both spam reviewers and suspicious commenters, which is a great advantage
over pure content-based approaches.

6.3. A comparison of linguistic model-based and spam indicators-based classifiers

As we discussed in Section 6.1 and Section 6.2, we have observed inconsistency between two clas-
sifiers: the Linguistic model-based classifier and the Spam indicators-based classifier. While we have
mentioned one possible reason (i.e., the linguistic model with TripAdvisor ground truth set can only be
applied to travel-related or even only TripAdvisor reviews), in this section we further investigate how
different these two classifiers actually are.

Spearman’s rank correlation coefficient ρ is a measure of testing statistical dependence between two
ranked lists [36]. To compare the ranks in Section 6.1 and the ranks in Section 6.2, we apply Spearman’s
rank correlation coefficient.

The definition of Spearman’s rank correlation coefficient is as follows.

ρ = 1 − 6
∑n

i=1 d2
i

n(n2 − 1)
,

where di is the difference between ranks of reviewer i and n is the number of reviewers.
The sign of the Spearman’s correlation indicates the direction of association between two ranked lists

R1 and R2. If R2 increases when R1 increases, the coefficient ρ is positive. If R2 decreases when R1

increases, ρ is negative. As ρ becomes closer to zero, there are less correlation between R1 and R2, and
ρ of zero means that there is no correlation between R1 and R2. Table 3 summarizes the Spearman’s
rank correlation coefficient between ranks in Section 6.1 and ranks in Section 6.2.

As shown in Table 3, ρ in each category is close to zero, meaning that there are no correlation between
the ranked list from Section 6.1 and that from Section 6.2.
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Table 3

Spearman’s rank correlation coefficient in each category

Category Spearman’s ρ

Across −0.0054
Books −0.0041

Fig. 19. The number of positive and negative relationships of spam reviewers in each category.

7. Analysis on spam targets of discovered reviewers

We now explore the results from Stage 4 of our approach: characteristics of spam targets of the dis-
covered reviewers. Specifically, we will show the differences between the outgoing relationships of high
and low strengths of strongly positively connected communities (i.e., spammers and non-spammers).

As we have observed strong spammer candidates are those who build strongly positively connected
communities with a strength higher than 80%, we investigate the high strengths (80% ∼ 99.5%) of
outgoing relationships from reviewers in the high strengths (80% ∼ 99.5%) of communities for spam-
mers; the low strengths (0% ∼ 60%) of outgoing relationships from reviewers in the low strengths
(0% ∼ 60%) of communities for non-spammers.

Figure 19 shows the number of positive and negative outgoing relationships from the discovered re-
viewers with various different community strengths. To show the differences clearly, we put the dotted
lines between spammer and non-spammer communities in Fig. 19. Recall that in the Across dataset, no
community is found with strengths 10% ∼ 40% and 70% and thus they are not presented in Fig. 19(a).
We summarize our observation as follows.

First, the discovered spammers have a relatively large number of strong positive outgoing relation-
ships, compared to the strong negative outgoing relationships as shown in the left sides of Fig. 19(a) and
Fig. 19(b); whereas non-spammers have a similar number of weak positive and negative relationships as
shown in the right sides of Fig. 19(a) and Fig. 19(b). Furthermore, we have observed that there are not
many strong demoting behavior in our dataset as shown in the left sides of Fig. 19(a) and Fig. 19(b).
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In fact, we also want to note that most strong positive outgoing relationships tend to appear inside the
discovered spammer communities. This result might suggest that the primary goal of spammers is rather
promoting their own reviews than demoting those of competitors.

8. Discussions and conclusions

In this paper we proposed a novel approach to find opinion spammer groups by analyzing community
structures built through abnormally non-random positive interactions based on the intuition that spam-
mers need to form artificial communities to make their opinions influential. Note that we are fully aware
of the fact that non-spammers may form natural communities because of their genuine common interest
on items as mentioned in Section 1. Therefore, we focused on the strongly, positively connected com-
munities with high strengths (80% ∼ 99.5%). So far, we have shown and explained how spammicity
varies across the different strength of the discovered strongly positively connected communities. In the
following, we will first show the statistical differences between different strengths of communities in
Section 8.1. Furthermore, we will illustrate that our results cannot be duplicated without sentiment anal-
ysis. In other words, we will show that only high strengths of positive communities, not high strengths of
neutral or negative communities, are spammers in Section 8.2. Additionally, Section 4.2 shows that our
discovered reviewers tended to post significantly more reviews compared to top and total reviewers. To
determine the spammicity differences of discovered reviewers reported in previous sections are due to
neither the number of reviews nor the length of reviews, we further analyze the correlations between the
spammicity of reviewers and the number of reviews they submitted in Section 8.3, and the correlations
between the spammicity of reviewers and the length of reviews they submitted in Section 8.4.

8.1. The statistical differences among each strength of discovered communities

We performed t-test to show the statistical differences among each strength of discovered communi-
ties. Specifically, we will show that two-tailed t-tests reject the null hypotheses that there are no signifi-
cant differences among the communities in terms of edge probability distribution and spammicity value
distribution. Table 4 and Table 5 show the statistical differences among each strength of discovered com-
munities in terms of edge probability distribution and spammicity value distribution, respectively. As we
observed that the major behavioral change occurs in 0%, 60%, and 99.5% communities, we present the

Table 4

Statistical differences in terms of edge probability distribution in each category (t-test)

The communities to be compared Across Books
0% & 60% p = 4.87e−3 p = 2.22e−17

0% & 99.5% p = 2.30e−6 p = 1.02e−40

60% & 99.5% p = 7.69e−4 p = 7.26e−19

Table 5

Statistical differences in terms of spammicity value distribution in each category (t-test)

The communities to be compared Across Books
0% & 60% p = 2.86e−3 p = 6.23e−2

0% & 99.5% p = 2.11e−75 p = 7.60e−58

60% & 99.5% p = 2.86e−71 p = 4.48e−54
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results comparing 99.5% communities against 0% and 60% communities. As shown in Table 4, we ob-
serve that the three communities are significantly different from each other in terms of edge probability
distribution (p � 0.05). This lends support for our hypothesis that we can differentiate communities
based on their interaction patterns.

On the other hand, we also observe that 99.5% communities (i.e., spam communities) are significantly
different from 0% and 60% communities (non-spam communities) in terms of spammicity value distri-
bution, as shown in Table 5 (p � 0.05). This corroborate our claim that there exist correlations between
the strength of communities and the spammicity.

8.2. The effect of sentiment analysis using spam indicators-based classifier

Figure 20 shows the modified ROC curve without sentiment analysis using the Spam Indicators-based
Classifier in [28]. In particular, we ignored sentiments of relationships and found strongly connected
communities in each strength of general user relationship graphs. For this analysis, we vary strengths
of strongly connected communities as thresholds to define spammers. The x-axis represents the false
positive rate and the y-axis represents true positive rate. Each point represents true positive rate against
false positive rate given τ strength as a threshold.

Similar to the analysis in Section 6.1 and Section 6.2, we assume that reviewers in communities with
strengths greater than or equal to τ are spammers; those in communities with strengths less than τ are
non-spammers.

As shown in Fig. 20, we observe that all points are yielded in the bottom right corner. Unlike the
results in Fig. 18 where we observed 0% false positive rate with 80% as a threshold, Fig. 20 suggests
that false positive rates are close to 50% with 80% as a threshold; unlike the results in Fig. 18 where
we observed high (close to 100%) true positive rate with 80% as a threshold, Fig. 20 suggests that true
positive rates range from 10% to 20% with 80% as a threshold. This indicates that reviewers in strongly
connected communities whose strengths are greater than 60% are not necessarily to be spammers unlike
our findings on the strengths of strongly yet positively connected communities. This agrees with our
assumption that spammers are strongly correlated with each other through positive interactions, and
both analysis including the sentiment analysis and the strength analysis of relationships is needed to
discover spammers.

Fig. 20. Modified community-strength based ROC curve without sentiment analysis.
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8.3. Spammicity analysis of reviewers grouped by the number of reviews

In this section, we analyze the correlations between the spammicity of reviewers and the number
of reviews they submitted. The reviewers are grouped by the number of reviews submitted. Since the
number of reviews of discovered reviewers ranges from 100 to 600, they are divided into five groups
with 100–200, 200–300, 300–400, 400–500, and 500–600 reviews. In Across dataset, there are 2,375,
892, 433, 213, and 127 reviewers respectively; in Books dataset, there are 1,172, 439, 185, 103, and 50
reviewers respectively.

We compare the nine spammicity values of five groups of reviewers against the top and the total
reviewers. By doing so, we will show reviewers who have the corresponding number of reviews to each
strength of communities do not show specific behavior patterns like discovered reviewers. In fact, we
will show that those five groups of reviewers behave similar to either top reviewers or total reviewers.

In the following we will present the results in a series of tables where: each row represents each group
of reviewers.

Content similarity (CS): Table 6 presents the average CSs of the five groups of reviewers compared
to the top and the total reviewers. As shown in Table 6, we do not observe a specific correlation between
CS and the number of reviews across the two datasets. The CSs of the five groups of reviewers range
from 0.3 to 0.5 for both datasets and it is hard to draw a clear pattern from it.

Rating abused item ratio (RA): Table 7 presents the average RAs of the five groups of reviewers
compared to the top and the total reviewers. As mentioned before, non-spammers are not likely to involve
in rating abuse in general. As shown in Table 7, we observe the RAs of the five groups of reviewers are
close to zero, which is similar to that of top reviewers and that of total reviewers. It is also interesting

Table 6

Contents similarity (CS) in each category

The number of reviews Across Books
600–500 0.5314 0.5113
500–400 0.5385 0.5135
400–300 0.5255 0.3568
300–200 0.4588 0.3472
200–100 0.3402 0.4777

Total Reviewers 0.39 0.2897

Top Reviewers 0.3021 0.5477

Table 7

Rating abused item ratio (RA) in each category

The number of reviews Across Books
600–500 0.0228 0.0263
500–400 0.0221 0.0246
400–300 0.0272 0.0361
300–200 0.0422 0.0387
200–100 0.0463 0.0506

Total Reviewers 0.0322 0.1488

Top Reviewers 0.0066 0.008
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Table 8

Review duplicated items ratio (DUP) in each category

The number of reviews Across Books
600–500 0.0057 0.0072
500–400 0.0050 0.0046
400–300 0.0091 0.0052
300–200 0.0092 0.0088
200–100 0.0084 0.0096

Total Reviewers 0.0646 0.0477

Top Reviewers 0.0186 0.0193

Table 9

Maximum one day review ratio (MOR) in each category

The number of reviews Across Books
600–500 0.1365 0.1204
500–400 0.1512 0.1596
400–300 0.14 0.149
300–200 0.1319 0.1325
200–100 0.1097 0.1130

Total Reviewers 0.0361 0.0347

Top Reviewers 0.0855 0.0881

to see, while the difference between the maximum and the minimum values is not significant, there
seemingly exists a negative correlation between the number of reviews and RAs in Across and Book
categories across the five groups as shown in Table 7. One possible reason might be that those active
users who reviewed more are often more likely to be reliable similar to top reviewers.

Review duplicated items ratio (DUP): Table 8 presents the average DUPs of the five groups of re-
viewers compared to the top and the total reviewers. As mentioned before, non-spammers are not likely
to post similar multiple reviews on the same item. As shown in Table 8, we observe the DUPs of the
five groups of reviewers are close to zero, regardless of the number of reviews they submitted and their
values are lower than the DUPs of either the top or the total reviewers.

Maximum one day review ratio (MOR): Table 9 shows the average MORs of the five groups of
reviewers together with the top and the total reviewers. In Section 5.3, we mentioned the MOR of the
top reviewers was relatively high, compared to the MOR of the total reviewers. It is interesting to see
that MORs of the five groups of reviewers are also similar to that of the top reviewers (between 0.1 and
0.2). This result may suggest that users who submitted a lot of reviews in a system are actually active
users who submit relatively many reviews in one day as well in general.

First review ratio (FRR): Table 10 presents the average FRRs of the five groups of reviewers together
with the top and the total reviewers. As shown in Table 10, the FRRs of the five groups of reviewers are
similar to that of total and top reviewers (0.3).

Early time frame ratio (ETF): Table 11 shows the average ETFs of the five groups of reviewers
compared with the top and the total reviewers. Interestingly, the ETFs (nearly 0.5) of the five groups
of reviewers are relatively high compared to that of total reviewers (nearly 0.4), while their ETFs are
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Table 10

First review ratio (FRR) in each category

The number of reviews Across Books
600–500 0.3568 0.3648
500–400 0.3634 0.3714
400–300 0.3987 0.3944
300–200 0.3784 0.3863
200–100 0.354 0.3566

Total Reviewers 0.3209 0.3939

Top Reviewers 0.342 0.4418

Table 11

Early time frame ratio (ETF) in each category

The number of reviews Across Books
600–500 0.5648 0.6016
500–400 0.5569 0.5708
400–300 0.5824 0.5884
300–200 0.593 0.6068
200–100 0.5933 0.5963

Total Reviewers 0.4312 0.5393

Top Reviewers 0.4971 0.5812

Table 12

Deviated rating ratio (DEV) in each category

The number of reviews Across Books
600–500 0.2392 0.2136
500–400 0.2298 0.2443
400–300 0.3170 0.2128
300–200 0.3116 0.2062
200–100 0.382 0.2825

Total Reviewers 0.3136 0.2496

Top Reviewers 0.0892 0.0979

similar to that of top reviewers. This result may indicate that those more active reviewers often tend to
review an item earlier than others.

Deviated rating ratio (DEV): Table 12 shows the average DEVs of the five groups of reviewers to-
gether with the top and the total reviewers. It is interesting to see a seemingly negative correlation
between the number of reviews and DEV in Across category. Also, the DEV of a group of reviewers
who submitted 100-200 reviews is the highest in Across and Book categories as shown in Table 12.
This result may indicate that more active users who submitted more reviews show more similar rating
behavior to top reviewers. In other words, opinions of those active users are often likely to be consistent
with others’ perceptions.

Extreme rating ratio (EXT): Table 13 shows the average EXTs of the five groups of reviewers com-
pared with the top and the total reviewers. As shown in Table 13, the EXTs of the five groups of review-
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Table 13

Extreme rating ratio (EXT) in each category

The number of reviews Across Books
600–500 0.4614 0.487
500–400 0.467 0.47
400–300 0.4973 0.4935
300–200 0.4938 0.4946
200–100 0.492 0.4858

Total Reviewers 0.5274 0.4608

Top Reviewers 0.5633 0.5458

ers are similar to that of total reviewers (between 0.4 and 0.6), regardless of the number of reviews they
submitted.

Review burstiness (BST): In general, active non-spammers do not burstly review items, but they are
more likely to have a relatively long history. Indeed, the BSTs of the five groups of reviewers are zero;
whereas the BST of total reviewers is higher than zero.

In short, our findings from spammicity analysis of reviewers grouped by the number of reviews can
be summarized as follows. First, in general, we could not find specific spammicity patterns based on the
number of reviews submitted. Generally speaking, the spammicity values of the five reviewer groups are
similar to that of total reviewers (low spammicity). This lends support to our claim that distinguishing
characteristics of discovered reviewers presented in Section 5.3 are not simply due to the reason that the
discovered reviewers reviewed more.

Second, users who reviewed more tend to show similar behavior to top reviewers in some features
such as ETF, MOR, FRR, and DEV. This also agrees with the common sense that users who submitted
many reviews are actually active users who review more and earlier. And opinions of such more active
reviewers may be considered as reliable.

8.4. Spammicity analysis of reviewers grouped by the length of reviews

In this section, we analyze the correlations between the spammicity of reviewers and the average
length of reviews they submitted. The reviewers are grouped by the average length of reviews submitted.
Since the average length of reviews of discovered reviewers ranges from 300 to 600, they are divided
into three groups whose lengths of reviews are 300-400, 400-500, and 500-600, respectively. In Across
dataset, there are 3,037, 1,713, and 956 reviewers respectively; in Books dataset, there are 1,443, 739,
and 437 reviewers respectively. We compare the nine spammicity values of three groups of reviewers
against top and total reviewers.

By doing so, we will show reviewers who have the corresponding length of reviews to each strength
of communities do not show specific behavior patterns like discovered reviewers. In fact, we will show
that those three groups of reviewers behave similar to either top reviewers or total reviewers.

In the following we will present the results in a series of tables where: each row represents each group
of reviewers.

Content similarity (CS): Table 14 presents the average CSs of the three groups of reviewers compared
to top and total reviewers. As shown in Table 14, we do not observe a specific correlation between CS
and the length of reviews across the two datasets. The CSs of the three groups of reviewers range from
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Table 14

Contents similarity (CS) in each category

The length of reviews Across Books
600–500 0.2249 0.2997
500–400 0.3869 0.3209
400–300 0.4787 0.3123

Total Reviewers 0.39 0.2897

Top Reviewers 0.3021 0.5477

Table 15

Rating abused item ratio (RA) in each category

The length of reviews Across Books
600–500 0.0085 0.0052
500–400 0.0097 0.0056
400–300 0.0048 0.0084

Total Reviewers 0.0322 0.1488

Top Reviewers 0.0066 0.008

Table 16

Review duplicated items ratio (DUP) in each category

The length of reviews Across Books
600–500 0.0038 0.0035
500–400 0.0040 0.0034
400–300 0.0032 0.0029

Total Reviewers 0.0646 0.0477

Top Reviewers 0.0186 0.0193

0.2 to 0.5 for both datasets; which are similar to those of top and total reviewers and lower than those of
discovered reviewers in 80% ∼ 99.5% communities (0.7–1.0).

Rating abused item ratio (RA): Table 15 presents the average RAs of the three groups of reviewers
compared to top and total reviewers. As shown in Table 15, we observe the RAs of the three groups
of reviewers are close to zero, which is similar to those of top and total reviewers. This means that the
three groups of reviewers are not likely to involve in rating abuse regardless of the length of reviews they
submitted.

Review duplicated items ratio (DUP): Table 16 presents the average DUPs of the three groups of
reviewers compared to top and total reviewers. As shown in Table 16, we observe the DUPs of the three
groups of reviewers are close to zero, which is similar to those of top and total reviewers. This means that
the three groups of reviewers are not likely to post similar multiple reviews on the same item regardless
of the length of reviews they submitted.

Maximum one day review ratio (MOR): Table 17 shows the average MORs of the three groups of
reviewers together with top and total reviewers. As shown in Table 17, the MORs of the three groups of
reviewers are similar to that of total reviewers. Recall that top reviewers and the reviewers who submitted
100–600 numbers of reviews are more active reviewers who have relatively high MORs. It is interesting
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Table 17

Maximum one day review ratio (MOR) in each category

The length of reviews Across Books
600–500 0.0492 0.0543
500–400 0.0505 0.0532
400–300 0.0452 0.0562

Total Reviewers 0.0361 0.0347

Top Reviewers 0.0855 0.0881

Table 18

First review ratio (FRR) in each category

The length of reviews Across Books
600–500 0.2341 0.2535
500–400 0.2283 0.2501
400–300 0.2004 0.2659

Total Reviewers 0.3209 0.3939

Top Reviewers 0.342 0.4418

Table 19

Early time frame ratio (ETF) in each category

The length of reviews Across Books
600–500 0.3917 0.4034
500–400 0.3923 0.4124
400–300 0.3702 0.4327

Total Reviewers 0.4312 0.5393

Top Reviewers 0.4971 0.5812

to see that the three groups of reviewers who submitted relatively long reviews (300–600 lengths of
reviews) do not show such high MORs. This may suggest that the length of reviews does not have any
correlations with the spammicity as well as how active they are in the system.

First review ratio (FRR): Table 18 presents the average FRRs of the three groups of reviewers together
with top and total reviewers. Interestingly, the three groups of reviewers have relatively low FRRs,
compared to top and total reviewers. This result agrees with the results for MOR that the average length
of reviews they submitted may not have any correlation with the spammicity and how active they are in
the system.

Early time frame ratio (ETF): Table 19 shows the average ETFs of the three groups of reviewers
compared with top and total reviewers. Similar to the results for FRRs, the three groups of reviewers
have relatively low ETFs.

Deviated rating ratio (DEV): Table 20 shows the average DEVs of the three groups of reviewers
together with top and total reviewers. It is interesting to see the DEVs of the three groups of reviewers
are relatively low compared to that of total reviewers, while the DEVs are similar to that of top reviewers.
This result and previous results for MOR, FRR, and ETF may indicate that the reviewers who submitted
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Table 20

Deviated rating ratio (DEV) in each category

The length of reviews Across Books
600–500 0.0857 0.0963
500–400 0.0862 0.0748
400–300 0.0953 0.0860

Total Reviewers 0.3136 0.2496

Top Reviewers 0.0892 0.0979

Table 21

Extreme rating ratio (EXT) in each category

The length of reviews Across Books
600–500 0.5732 0.5164
500–400 0.5695 0.5070
400–300 0.59 0.5372

Total Reviewers 0.5274 0.4608

Top Reviewers 0.5633 0.5458

Table 22

Review Burstiness (BST) in each category

The length of reviews Across Books
600–500 0.0073 0.0139
500–400 0.0063 0.0077
400–300 0.0048 0.0031

Total Reviewers 0.028 0.0173

Top Reviewers 0.0002 0.0002

relatively long reviews are not necessarily active users yet their opinions are generally consistent with
others’.

Extreme rating ratio (EXT): Table 21 shows the average EXTs of the three groups of reviewers
compared with top and total reviewers. As shown in Table 21, the EXTs of the three groups of reviewers
are similar to those of top and the total reviewers regardless of the length of reviews they submitted.

Review burstiness (BST): Table 22 shows the average BSTs of the three groups of reviewers together
with top and total reviewers. As shown in Table 22, the BSTs of the three groups of reviewers are similar
to that of total reviewers.

In short, our findings from spammicity analysis of reviewers grouped by the length of reviews can be
summarized as follows. First, in general, we could not find specific spammicity patterns based on the
length of reviews submitted. Generally speaking, the spammicity values of the three reviewer groups are
similar to those of top and total reviewers (low spammicity). This lends support to our claim that dis-
tinguishing characteristics of discovered reviewers presented in Section 5.3 are not due to their longer
reviews. Second, the behavior of the reviewers who submitted relatively long reviews are not much
different from total reviewers, meaning that the length of reviews rarely affects the spammicity of re-
viewers.
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Conclusion: In this research we exposed two types of spammers: spam reviewers who post spam
reviews and supporting commenters who extensively endorse those reviews. Through extensive exper-
imental analysis, we demonstrated the effectiveness of our community-based approach in terms of ac-
curacy and reliability. We showed that our approach can successfully identify without relying on review
contents, while achieving the same level of accuracy as the state of the art content-based classifier.

Some challenges still must be surmounted. First, the proposed approach has focused mainly on spam-
mer groups so it cannot find individual non-group spammers. We may combine our approach with
content-based classifiers (e.g., [28,48]) to detect such non-group spammers. Second, while we have
discussed the effectiveness of our approach in terms of detection accuracy, it would also be useful to
develop a model to measure the effect of various spamming strategies (e.g., manipulate contents and
build artificial communities). We thereby plan to investigate the robustness of our approach to other do-
mains (i.e., to what degree attackers can manipulate their behavior to avoid detection). Also, while our
research was done with the static historical data, we plan to study the dynamics of user activities to deal
with evolving spammer communities (e.g., a non-spammer may be compromised, new spammers join,
and the existing spammer may be suspended).
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