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ABSTRACT
Existing phishing detection techniques mainly rely on blacklists
or content-based analysis, which are not only evadable, but also
exhibit considerable detection delays as they are reactive in nature.
We observe through our deep dive analysis that artifacts of phishing
are manifested in various sources of intelligence related to a domain
even before its contents are online. In particular, we study various
novel patterns and characteristics computed from viable sources
of data including Certificate Transparency Logs, and passive DNS
records. To compare benign and phishing domains, we construct
thoroughly-verified realistic benign and phishing datasets. Our anal-
ysis shows clear differences between benign and phishing domains
that can pave the way for content-agnostic approaches to predict
phishing domains even before the contents of these webpages are
up and running.

To demonstrate the usefulness of our analysis, we train a classi-
fier with distinctive features, and we show that we can (1) perform
content-agnostic predictions with a very low FPR of 0.3%, and high
precision (98%) and recall (90%), and (2) predict phishing domains
days before they are discovered by state-of-the-art content-based
tools such as VirusTotal.

CCS CONCEPTS
• Security and privacy→Web protocol security.
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Figure 1: Frequency count (in log scale) of HTTP (red bars)
and HTTPS (green bars) phishing domains per year from
2014 to 2020

Attacks, Intrusions and Defenses (RAID 2022), October 26–28, 2022, Limas-
sol, Cyprus. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3545948.3545958

1 INTRODUCTION
While web-based malware attacks have declined, phishing attacks
are showing no signs of slowing down [8, 22, 65]. Previous research
examined content-based analysis [62, 70, 85], and network-based
or URL-based approaches [27, 28, 48, 53, 75, 81]. In practise, ex-
isting defensive techniques rely on published blacklists, reported
and verified by users [16, 17], or deployed by companies or orga-
nizations, including Google Safe Browsing (GSB) [21], VirusTotal
(VT) [82], and the Anti Phishing Working Group (APWG) [1]. One
key requirement for such blacklists is timeliness. That is, a domain
must be added to the blacklists before it has affected many victims.
Currently however, a domain is added to blacklists only after it
has started its campaign. Furthermore, blacklists are vulnerable
to cloaking [63, 64], a technique where phishing domains evade
crawlers such as VT and GSB, but are still made visible to vic-
tims. Content-based techniques can’t be proactive as well and can
be expensive. With the challenges facing content-based detection
techniques, there is a growing need to utilize alternative defensive
approaches.
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In this work, we observe that there are multiple sources of in-
formation before domain content is available online, and we seek
to understand if these sources can indicate phishing intent. Such
sources include WHOIS records, passive DNS records 1 and cer-
tificate records. While WHOIS records are increasingly hard to
aggregate and query, passive DNS traces and domain certificates
are readily available. Historical certificates in particular are avail-
able through Certificate Transparency (CT) logs [19]. Those are
public transparent append-only servers publishing certificates al-
most as soon as they are issued. Phishing domains, in particular,
are increasingly incentivized to be CT-compliant to (1) appear more
legitimate and to (2) be reachable by victims (non CT-compliance
affects reachability by browsers [14]). Oest et al. recently estimated
that HTTPS phishing attacks were three times more[10, 52] suc-
cessful than their HTTP counterparts [65].

Figure 1 compares the total number of HTTP and HTTPS re-
ported instances in Phishtank’s published list [16] of verified phish-
ing domains between 2014 and 2020. There is a significant increase
in the utilization of TLS (green bars) until recently. Generally speak-
ing, the difference between the number of HTTP (purple bars) and
HTTPS domains (green bars) has been decreasing over the years.
TLS adoption will continue growing [42, 72], and with CAs provid-
ing free automated certificates [26], domain owners (phishing or
benign) are increasingly getting on the TLS bandwagon.

Almost all prior research on phishing domain detection utilizes
a subset of Alexa top domains to represent benign domains [54, 78].
This results in a biased sample as a vast majority of the benign
domains do not appear in Alexa top lists. Further, domains ap-
pearing in Alexa are usually operational for decades, have stable
hosting infrastructures and follow best security practices compared
to non-Alexa benign domains. Such characteristics make it easier to
distinguish Alexa top domains from phishing domains, but it is not
surprising that machine learning models trained on Alexa domains
do not work well with the majority of benign domains which are
not present in Alexa top list as they exhibit significantly different
characteristics. A key distinction in our study is that we build and
analyze a realistic benign dataset that reflects the majority.
Approach. The event of real-time publishing of domain certifi-
cates in CT logs gives us an early peek at upcoming phishing do-
mains. We create thoroughly-verified datasets to represent benign
and phishing domains. We extract over 80 certificate-, pDNS-, and
lexical-based features based on novel observations, previous litera-
ture, or available tools. This is the first work that combines all these
features to perform content-agnostic phishing detection. We evalu-
ate our features using a Random Forest classifier, and we analyse
them rigorously, and show why they work.

Previous work [57] suggests that it is generally impossible to
differentiate between benign sites and phishing sites based on the
content of simple X.509 certificates features alone. To address this
issue, we combine aggregate and historical certificate features taken
from CT logs to effectively identify recurring long-term phishing
domains. We also combine CT and pDNS features to effectively
mark new phishing domains.
Contributions. Our work makes the following contributions:

1These records are primarily related to setup, configurations and testing. It should be
noted that these records include publicly available zone file updates as well.

• We create large thoroughly-verified datasets of phishing and
benign domains, comprising thousands of domains. Unlike
previous work, our benign domains are non-Alexa domains
which are harder to distinguish from phishing domains than
Alexa domains.

• We define and extract novel CT-, pDNS-, and lexical-based
features that do not require access to page content.

• Using our features, we train a classifier to predict and identify
new and long-term phishing domains without inspecting
content. We evaluate our model using various attribute sets
and show their importance. We show that our model is able
to identify phishing domains with very high precision and
recall.

• We analyse our features, and provide insights into how they
separate benign from phishing.

• We carry out live experiments to show the usefulness and
proactivity of our approach in practise. Indeed, we are able
to identify phishing domains days before they are identified
by the widely used GSB and VT phishing crawlers.

2 BACKGROUND
Passive DNS data feed. Passive DNS (pDNS) [83] captures traf-
fic by cooperative deployment of sensors in various locations of
the DNS hierarchy. For example, Farsight pDNS data [39] utilizes
sensors deployed behind DNS resolvers and provides aggregate
information about domain resolutions as well as public available
zone file updates. In our research, we use this as our pDNS feed.
One advantage of pDNS is that it preserves the privacy of individual
Internet users as it contains only aggregated information. However,
such data is not as rich in information as proxy/HTTP DNS logs,
which not only contain individual DNS queries and responses, but
also timing information. Despite these limitations, we are able to
extract important data and characteristics as described in Section 3.
Previous research utilizes this data feed to uncover the behavior of
domains in the wild and also detect malicious domains [44, 45]. In
this work, we use the following three record types from pDNS:

• SOA records: they contain the MNAME (the primary name
server for the domain) and RNAME (email of the domain
name administrator).

• A records: these records map the domain names to their IPs.
• MX (mail exchanger) and NS (name server) records: these
specifiy where inboundmail for a domain should get directed
and authoritative name servers respectively.

All of the above records also contain timing information (such
the first and last seen timestamps for each record), and the count
of DNS lookup requests.
VirusTotal(VT) URL feed. VT [82] is a Google-based service that
provides a public querying facility to obtain intelligence on any URL
by analyzing more than 70 third-party scanners and URL/domain
blacklisting services, including Google Safe Browsing (GSB) [21],
COMODO site inspector [5], phishtank [16] and many others. Each
tool in VT categorizes a URL as clean, malicious, phishing or mal-
ware. VT provides a rate limited public API to check the status
of URLs programmatically. Additionally, every hour, VT publishes
a feed of URLs along with aggregated intelligence for the URLs
queried by Internet users all around the world during the previous
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Figure 2: Number of VT engines reporting a domain as
“phishing”

hour. Previous research [44] utilizes VT data to compile malicious
ground truth for detecting or predicting malicious activities in the
Internet. However, there are challenges related to the intelligence
reported by VT. For example, GSB and phishtank results in VT
are not always consistent with their direct results and different
tools provide different labels such as phishing and malware for a
given URL. A common practice is to obtain the intersection between
multiple sources and also to use majority voting as the final VT
label [44].

3 DATA COLLECTION AND VALIDATION

Phishing domain dataset. Phishtank [16] is a free community
based site, where users submit and query phishing domains and
URLs. We maintain a local database of Phishtank URLs that are
synced with Phishtank. From this database, we constructed a list of
11K HTTPS domains randomly sampled after applying the follow-
ing filtering:

• We included HTTPS domains labelled as “valid”, meaning
that they have been verified as phish by the community
members.

• We eliminated HTTPS domains relying on web hosting (such
as domains hosted by godaddysites.com) since querying
the certificates for any of these categories does not return
the intended certificates for phishing domain.

We checked each domain against VT to ascertain that it is indeed
still phishing. Figure 2 shows the distribution of the number of
“phishing” label positives for this data. In addition to phishtank, 50%
of the domains have been red flagged by more than three engines.
Wemaintained only the domains that have been specifically marked
by VT as “phishing” (rather than “malicious” or “suspicious”) by at
least one VT engine. This reduced the domain list slightly to 10.8K
domains. From these domains, there were roughly 7.8K domains
with multiple certificates and 3K domains with only one certificate.

While the dataset contains domains that have been reported
prior to November 2020, we performed our VT cross-check of their
current phishing status early December 2020 to ensure that they
are still considered phishing during our analysis. To further ensure
accurate phishing ground truth, we actively queried these domains
periodically and found that over 50% are non-existent, which is
consistent with short-lived disposable phishing domains behaviour.
For the phishing domains that are currently online, we took random

samples and manually verified that they are indeed phishing web
sites.
Benign domain list. Although Alexa lists have been generally
used in previouswork as themain source of benign domains [54, 78],
we believe that relying solely on Alexa top domains can result
in biased observations2. We craft benign non-Alexa datasets to
realistically model the various types of domains that get appended
daily to CT logs. Alexa domains alone cannot realistically represent
mainstream benign domains.

Instead, we construct our benign domains list as follows. First,
we compiled roughly 35M domains that were appended to CT logs
in 5 nonconsecutive days in November 2020. Then, we filtered the
domains which are never marked by VT URL feed as malicious (i.e.
consistentlymaintained a VT score of zero) during the last year3.We
also filtered out any domains that appeared in Phishtank in the last
10 years. We sampled down the list to 3,000 one-certificate domains,
and 8,000 multiple-certificate domains to match the number of
domains in our phishing dataset.

Likewise to the phishing dataset, verification against VT of mali-
cious domain status for the benign dataset was carried out early
December 2020.
Alexa domains list. For completeness and comparison purposes,
we also compiled a list of top 10K Alexa domains by randomly
picking domains from top 20K Alexa domains.

For each domain in our lists, we query COMODO’s crt.sh
server [13] to get all its certificates using the pycrtsh Python mod-
ule.We use the certificate serial numbers (for each domain) so as not
to double count certificates due to the existence of pre-certificates
and leaf certificates. We successfully downloaded most of the cer-
tificates in our domain lists4.

4 RETROSPECTIVE ANALYSIS
The goal of our analysis is to understand and compare the char-
acteristics exhibited by the different datasets in order to derive
effective features with a clear understanding of why they work in
identifying phishing domains.

4.1 CT logs temporal characteristics
CT logs are a rich repository containing historical records of cer-
tificates for each domain. We first examine if phishing domains
exhibit distinguishing temporal characteristics. In particular, we
compare the distributions of the CT lifetime between the benign
and the phishing datasets. We also compare the number of historical
obtained certificates and frequency of issued certificates.
Lifetime.We extract the CT lifetime of each domain. The lifetime is
the difference between the expiration date of the last certificate and
the issuance date of the first certificate. We show the lifetime for
domains with multiple certificates. For single-certificate domains,
we show the certificate validity period distributions later in the
section (in Figure 6).

2Because various Alexa domains are well-provisioned e-commerce, social networks or
localised versions of top corporations, data can be severely biased.
3We collect VT hourly URL feed that include all the URLs queried by the community
in each hour of the day since Nov 2017.
4Only 688 phishing domains were not successfully downloaded due to server or
network errors.
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Figure 3: CT logs temporal characteristics
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Figure 4: Issuer and SAN-based characteristics

Figure 3a shows the distribution of the CT lifetime (in days) of
each domain as it appears in CT logs. As expected, Alexa domains
clearly have larger lifetimes than our benign and phishing domains.
Furthermore, benign and phishing domains clearly exhibit different
distributions. Our benign domains have a lifetime of 720 days,
whereas phishing domains have a lifetime of 365 days at the median,
though 20% of phishing domains have lifetime ranges from three to
several years. This certificate lifetime is possibly different from the
active phishing campaign lifetime, as it has been shown previously
that the active lifetime of the majority of phishing domains does
not exceed a few days [56, 80]. However, contrary to popular belief,
some phishing domains have a longer time span over multiple years,
as we also observe in our dataset. For example, Le Page et al. [49]
shows that there are many URL-shortened phishing URLs that are
active for more than one year. Indeed, Oest et al. point out that
while some campaignsmay be short lived, organized criminals carry
out successive deployment of persistent and sophisticated attacks
to improve their profits and longevity [65]. Our observations are
consistent with these findings.

Our close examination showed that some of the longer lived
phishing domains are actually “parked” or “revived” after their
prior use. For example, bestbuy-us.com is a domain from our
phishing dataset that was initially parked and then turned phishing
after a while. Also, the domain paypal-secure-limited.com is
an example domain from our phishing dataset that was initially
registered ten years ago, blacklisted shortly afterwards, and then
re-registered in April 2020, a few months after the expiration.

Of the 20% long-lived phishing domains, we observed that 13%
were parked one or more times during their lifetime and about 30%
of the phishing domains exhibit the “revived” behavior. To verify
this further using WHOIS, we extracted a subset of phishing domains
that made their first CT appearance in 2020, and tracked the dates of
when they were first registered. We found that 50% of the domains
have been registered between 1 and 300 days in advance. These
observations suggest that parking and revived behavior of domains
are a good discriminator of benign and phishing.
Inter-arrival times. While manually examining issuance dates
of domains, we were surprised to observe that it was common
for domains to obtain certificates with very close issuance dates.
To quantify this behaviour, we compute the inter-arrival times be-
tween certificates for multi-certificate domains. This is the time
gap between the issue dates of every two consecutive certificates
of a domain. We expect benign domains to acquire new certificates
near the expiry date of their existing certificates so as not to risk
using expired certificates. Phishing domains inter-arrival times are
expected to depend on their longevity goals.

Figure 3b depicts the distribution of the mean inter-arrival times
between certificates of each domain. Roughly 30% of phishing do-
mains had close to zero days inter-arrival times, and only 0.3% of
benign domains had certificates with such short inter-arrival times.
We were surprised to see that certificates were being pushed fre-
quently, and almost on a daily basis for some cases, even though
their earlier certificates are still valid. For example, the phishing do-
main fakeid.top obtained 225 Let’s Encrypt certificates between
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2019-03-02 and 2020-09-24. Many of these certificates were obtained
on consecutive days. Alexa domains showed larger inter-arrival
times compared to phishing domains.

A related metric is shown in Figure 3c, which compares the dis-
tributions of the number of certificates that were issued in unique
(month, year) pairs. Approximately, 60% of phishing domain cer-
tificates were issued in two or one distinct (month, year) pairs. In
comparison, benign domains showed more than ten unique pairs
at the median. This shows that benign certificates issuance is more
spaced out than phishing domains. Alexa domains appear to have
more distinct months than phishing but less than benign domains.

One explanation for the high frequency of certificates is that
domain owners may have a misconfigured Certbot client [6], a tool
allowing clients to automate the process of renewing Let’s Encrypt
certificates. The interarrival times between benign certificates were
generally larger than phishing certificates with more than 90%
exceeding 60 days (as shown in Figure 3b).

Another reason for the high frequency of certificates for Alexa,
benign and phishing domains is the use of Content Delivery Net-
works (CDNs) such as Cloudflare, which use one certificate to sup-
port multiple domains by using the Subject Alternative Names
(SAN) certificate extension. Those are also known as cruise certifi-
cates. The frequency of certificate updates increases with such use
of multi-domain (SAN) certificates. While the impact of misconfig-
ured certbots and cruise certificates is present in all datasets, we
believe the phishing datasets is the mostly affected.
Number of certificates. While phishing domains had a shorter
certificate inter-arrival times, benign and Alexa domains have a
significantly larger number of certificates. Figure 4a shows the
distributions of the total number of certificates obtained by multi-
certificate domains in our datasets. As can be seen, 80% of phishing
domains obtain between two and ten certificates. The same percent-
age of benign domains obtain more certificates that range between
three and 25. The distributions also exhibit a long tail where a very
small fraction of domains own significantly more certificates.

We inspected domains more closely to find out if some domains
have “uncertified” periods during their lifetime. In other words,
for domains that have more than one certificate C1,C2, ..,Cn , we
checked if the issue date of Ci is greater than the expiry date of
Ci−1. We found that 12% of benign domains showed uncertified
periods with a mean gap of 133 days. In comparison, 21% of the
total phishing dataset had such uncertified periods with a mean
gap duration of 181 days. Some of these phishing domains appear
to be squatting domains which contained substrings like “paypal”,
“netflix”, etc. This could be an indication of phishing domain reuse
or revival, possibly after a takedown operation, either by the same
operators or not. This observation is consistent with previous stud-
ies [58] of domain drop-catching suggesting that malicious domains
are more likely to be caught after they are dropped.

4.2 Certificate-based characteristics
SAN list. From the certificate extensions, we extracted the Subject
Alternative Names (SAN) field when available. This field lists all
domains that are authenticated using the same certificate. Some
organizationswithmultiple domain names, aliases, and subdomains,
also use this field for wildcard certificates. For each domain, we

compute the SAN list size, which is the number of domains in its
SAN field for one-certificate domains, or the average number of
domains in its SAN field from all certificates for multi-certificate
domains.

Figure 4b compares the distributions of the mean SAN list size
for Alexa, phishing and benign domains. For 50% of benign and
phishing domains, there are at most three domains in their SAN
lists. At the 75th percentile, benign domains have eight domains
in the SAN list, whereas phishing domains have 31. In general, it
appears that phishing domains have larger SAN lists than benign
or Alexa domains. We believe that the reason for the large SAN list
size for some phishing and benign domains is the reliance on CDNs
which generate the multi-domain certificates.

In some cases, when a CDN issues a multi-domain certificate,
the SAN field usually contains arbitrarily unrelated domains. For
example, one of the certificates for the domain mainlinehometeam.
com has a large SAN list which includes unrelated domains like
alabamacoastliving.org and mariottrealestate.com. Domains
like cnn.com have more related domains money.cnn.com, and mone
ystream.cnn.com, which are controlled by the same apex domain
cnn.com.

Based on the above observation, we expect the domains in the
second SAN list to have a higher similarity compared to the first
SAN list. To quantify similarity here, we compute the SAN matches,
which is the number of second-level domain matches between a
domain and the domains in its certificate’s SAN list. The rationale
is that a higher number of matches indicates a related group of
domains.

Figure 4c compares the number of SAN matches for benign and
phishing (one- and multi-certificate) domains. As expected, 50% of
domains from both datasets had at most two matches as those are
the domains that have a SAN list of size one or two (Figure 4b). At
the 80th percentile, benign domains had eight matches whereas
phishing domains had only two despite having the larger SAN sets.
Issuers. Intuitively, one would expect that phishing domains would
relymore on free certificates issued fromLet’s Encrypt or COMODO
to minimize the cost of their operations. Phishing catcher [15] is
a CT- and heuristics-based phishing domain detection tool that
listens to incoming certs and assigns a higher phishing score based
on several metrics, one of which is if the issuer is specifically Let’s
Encrypt. To assess the usefulness of this assumption, we extract
all certificates issued to each domain, and from each certificate,
we extract the issuer field. The issuer field consists of several sub-
fields, including the Organization (O), which indicates the name
of the issuing organization (e.g. COMODO CA Limited), and the
Common Name (CN), which indicates the server name within the
organization (e.g. COMODO RSA Domain Validation Secure Server
CA2 or COMODO ECC Extended Validation Secure Server CA).
Since organizations can have a large number of common names,
we restrict our analysis to organizations.

Figure 5a shows the frequency count of the most common CAs
(in log scale) in our datasets. The top four Organizations in all
datasets belong to COMODO, Let’s Encrypt, Digicert and cPanel5.
While there are slight differences in the frequencies of some CAs
5Note that cPanel is a web-hosting control panel provided by many hosting providers
to website owners to facilitate managing their pages. By default, cPanel uses COMODO
certificates, but the issuer organization field will still show as cPanel Inc.
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(a) Frequency count of CA organizations
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(b) Frequency count of certificate validation options

Figure 5: Issuers and certificate validation
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(e.g. Geotrust and Verisign), the dominance of the top issuers makes
such differences insignificant. One takeaway is that the issuer alone
is insufficient to infer if the domain is suspicious. Contrary to pop-
ular belief [74], the domain association with Let’s Encrypt doesn’t
necessarily mean malicious use.

We also checked if certain pairs of organizations occur more
frequently together for the phishing dataset. In general, we ob-
served that utilizing CloudFlare and Let’s Encrypt together by one
domain is more frequent for phishing domains with a count of 977
compared to 147 in benign domain. Note that both CloudFlare and
Let’s Encrypt provide free certificates, which makes them more
attractive for phishing operators trying to minimize the cost of
their operations.
Validation. Certificate validation has been used in previous work
as a feature to identify phishing certificates [80]. The rationale
is that benign domains opt for higher validation, while phishing
domains tend to reduce their costs by using lower validation options.
Each certificate has a validation option that is performed by the
CA. The most common validation options are Domain Validation
(DV), Organization Validation (OV), and Extended Validation (EV).

Note that certificates don’t explicitly encode their validation
type. To identify the validation type of each certificate, we rely on
(1) the Object Identifier (OID) field in the certificate if it exists (not
all certificates include it), and (2) other assumptions and heuristics
since there is no deterministic way to identify the certificate vali-
dation type. First, if the certificate is issued by Let’s Encrypt, we

assume it is a DV certificate, since Let’s Encrypt only provides this
category of certificates [18]. Next, we extract the OID field from
each certificate, and check if it is EV by checking if it belongs to a list
of known EV OIDs predefined in browsers [33, 36]. If not, we check
the policy against aggregated OIDs for DV and OV certificates
which we compiled from tools such as Censys [35] or manually
from the CA websites [61, 76]. If the OID does not belong to any
of our predefined lists, we follow (1) heuristical-based approaches
that have been proposed by experts [43], and (2) the documenta-
tion of baseline requirements set by the CA/Browser forum [32].
For example, if a certificate has organizationName, localityName,
stateOrProvinceName, and countryName that are set, we assume
it is OV. In most cases, the organizationName field of the subject
field contains the strings “Domain Control Validated” or “Domain
Validated”, which indicates a DV certificate.

Figure 5b compares the frequency count (in log scale) of the
validation code of all certificates belonging to the domains in our
datasets. DV is clearly the most common form of validation, as it
comes by default with basic and even free certificates. However, OV
appears to be common in both benign and phishing and more com-
mon in Alexa domains. Note that only 4,725 phishing certificates
have OV validation compared to 15,135 benign certificates6. Note
that our benign datasets didn’t include many EV certificates as we
deliberately selected non-Alexa benign domains with no history of
maliciousness/phishing. Note that EV certificates may be irrelevant
soon [4]. As expected, Alexa domains obtained significantly more
EV and OV (21,910 and 122,631, respectively) domains than benign
or phishing domains, but overall, DV validation is still mainstream
in all datasets, including Alexa domains which had 341,330 DV
certificates.
Validity period. Each certificate has a different validity period
that can range from a few months to a few years. Long-term paid
certificates are recommended for e-commerce due to their longer
validity, enhanced validation options, and customer support. One
would expect that benign domains would use more premium cer-
tificates compared to phishing domains. Note that some CAs, such
as Let’s Encrypt [24] and COMODO provide free certificate options

6We confirmed the OV certificate validation using COMODO’s SSL analyzer ser-
vice [12].
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Figure 7: Distributions of pDNS characteristics
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Figure 8: Distributions of IPs and ASNs obtained from pDNS A records

which have a duration of 3 months [5, 26], which can be attrac-
tive for both benign and phishing domains. More than 90% of our
benign domains have a validity of 90 days, which is the default
validity period for various DV certificates. While 60% of phishing
domains have a similar validity period, about 30% acquired certifi-
cates with up to one year of validity. For example, lloydsbank.
com.login-review-976.info is a phishing domains that has a
certificate with one year validity from 02-10-2020 to 02-10-2021,
whereas paypals-securitys.com is a phishing domain that has a
validity of one month from 07-09-2019 to 07-10-2019.

4.3 pDNS characteristics
Phishing domain revival can manifest itself in pDNS traces. It has
been previously observed that revived domains often exhibit bursty
DNS lookup behaviours where they show a sudden increase fol-
lowed by a sudden decrease in the number of requests [30]. These
patterns of increases and decreases correlate with revival attempts.

For example, the domain paypal-verify-secure.com is a phishing
domain that made its first appearance in May, 2017 with a lookup
volume of 329. Two years later (a gap of exactly 729 days), it made
its second appearance in May, 2019, with a small lookup volume of
8. The latest and final appearance occurred after a gap of 358 days
in May, 2020, with a lookup volume of 31. We believe that profiling
such bursty request behavior could help discriminate revived or
long lived phishing domains from benign ones.

Traffic. Using the Farsight API, we downloaded the Start of Author-
ity (SOA), A, and MX records for each domain. From each of these
records, we extract the count, which is the number of DNS queries
or resolutions recorded for a domain. Each record also maintains
timestamps of when a domain was first and last seen. We use these
fields to compute the pDNS lifetime, which is the difference between
the last time and the first time a domain was seen in the pDNS
traces. In general, we use the timestamps of all records to calculate
their respective durations and request counts.

Figures 7a and 7b show the distributions of pDNS lifetime (in
days) and DNS lookup counts taken from SOA records for benign
and phishing domains. Benign domains have significantly longer
lifetimes and DNS lookup requests compared to phishing domains.
Approximately, 30% of phishing domains have duration periods
that are close to zero and the remaining 70% range between a few
days to several years.
Domain ownership changes. Inspired by previous research that
aims to detect domain ownership changes [50], we compute three
components that indicate ownership changes based on: SOA dif-
ferences, infrastructure changes, and lookup volume. To compute
potential SOA differences, we utilize the MNAME (the primary
name server for the domain) and RNAME (specifies the email of the
domain name administrator). This is achieved by dividing each field
(RNAME and MNAME) into two halves of a temporal window, and
computing the Jaccard similarity between them. A similar process
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is done to detect infrastructure changes by also computing host sim-
ilarity hosts (from A records) between two halves of a window. The
idea is that substantial changes between the first and second halves
of a temporal window can indicate ownership changes. Finally, we
compute a statistical t-test between the lookup distribution of the
first and second halves of a temporal window as well.

Figure 7c plots the distribution of the Jaccard distances computed
based on SOA fields7. For benign domains, 25% showed no similar-
ity between their SOA halves, 40% showed perfect similarity, and
the rest are in between with roughly 20% showing 50% similarity. In
comparison, 45% of phishing domains have no similarity and 29%
have perfect similarity. Clearly, benign domains have more simi-
larities which indicates less ownership changes. Distances based
on RNAME showed similar distributions. For Alexa domains, 10%
showed no similarity, and more than 30% had perfect similarity.
Infrastructure changes. Rapid changes in the hosting infrastruc-
ture can be a sign of fast fluxing or maliciousness. To capture
domains that are either likely to be re-registered or hosted on mul-
tiple hosting providers over their lifespan, we extract the number
of name servers, and the number of administrative servers related to
the domain. We also extract the total number of IPs that have hosted
a domain during its lifetime. Since CDN hosting might cause a do-
main to be related to multiple IPs, we also extracted the number of
unique Autonomous System Numbers (ASNs) that hosted a domain.

We have not observed differences in the distributions of the
numbers of pDNS nameservers or the numbers of administrative
servers between benign and phishing domains. However, we ob-
served different distributions of the number of IPs and ASNs used.
This observation is consistent with the jumping hosting provider
behavior of many malicious domains [60]. Figures 8a, and 8b com-
pare the number of IPs and ASNs (owning the IPs) that host each
domain in our dataset. At the 80th percentile, benign domains are
hosted on two IPs, whereas phishing domains are hosted on up to
four IPs. Phishing domains are hosted on more IPs possibly due to
CDN use. In terms of the number of hosting ASNs, the difference
between the two distributions shrinks with one ASN at the 75th
percentile for benign and two ASNs for phishing. Alexa domains
use more IPs and ASNs than both benign and phishing domains as
they are more long term and utilize multiple CDN providers.

4.4 Lexical characteristics
We examine common lexical-based characteristics which utilize
domain name strings, some of which have been used previously as
features that can identify phishing domains [3, 15]. Such features
include domain name entropy, domain length, number of special
characters or digits, and squatting-based features.
Entropy. Randomized domain names generated by algorithms (e.g.
DGAs) can possibly be indicative of maliciousness. Relative entropy
has been used as a measure of randomness in domain names in
previous work [15, 29, 86]. To compute the relative entropy, we
compute the character entropy based on Alexa top 10K domains.
The idea is that characters in domain names should not be equally
probable, but should follow Alexa top domains in terms of character
probabilities as a baseline. We also computed a dictionary-based

7Other components based on the RNAME field and host similarities showed similar
differences between phishing and benign domains.
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Figure 10: Occurrences of characters

entropy, where in each domain name, base words are matched
against English dictionary words, or patterns. The entropy is then
calculated based on non overlapping matches8.

Figure 9 compares the relative and dictionary entropy distribu-
tions for benign and phishing datasets. In both approaches, phish-
ing domains result in more entropy. However, dictionary-based
entropy produce a significantly more distinguishable distribution
between benign and phishing domains compared to the relative
entropy approach. For example, at the median, benign domains
have a dictionary-entropy of 12.9, whereas the dictionary phishing
entropy is 19.5 bits.
Characters. Figure 10 compares the occurrences of characters used
in the domains in our datasets. In general, benign and Alexa do-
mains show similar frequencies compared to phishing domains,
which specifically use more digits and dashes. Alphabet usage is
similar for benign and phishing domains except for letters j, p, q,
x, z, and y, which appear to be used more frequently by phish-
ing domains. Most of these letters are also known to be the least
commonly used in English writing.
Squatting. Some phishing domains are also known to use squatting
techniques [45, 69] to trick more victims by mimicking legitimate
domains by embedding known popular “brand” names such as
paypal or apple in the domain name. To understand the relevance
8Weutilized zxcvbn [84], a state-of-the-art password strength estimator tool to compute
this entropy.
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of squatting techniques in our datasets, we use squatphish [78] to de-
tect squatting domains in our datasets. For each given domain name,
squatphish scans hundreds of popular brands for different squat-
ting types including typo-, combo-, homograph-, bits-squatting, or
wrong-TLD-squatting.

One challenge is that many benign domains exhibit the same be-
haviour. For instance, Squatphish red flagged 17.7% of our phishing
domains, categorizing 97% of which as combosquatting aiming to
look like apple.com or paypal.com (e.g. apple.com.icloudto.cn). The
remaining 3% (of the 18%) were marked as the other squatting types
(homographs, typo squatting, etc)9. Squatphish also marked 8% of
our benign domains as squatting (mostly combosquatting). For ex-
ample, cpcontacts.premiersurgoogle.ca appeared to resemble
google.com is a benign SEO website.

5 WHY CT LOGS AND PDNS TO DETECT
PHISHING?

The advantage of using CT logs and pDNS records as a source to
detect phishing domains early is twofold. First, both are accessible
sources that anyone can tap into and get an early peek of upcoming
phishing domains (new, or old and revived), which can result in im-
proved detection latency. In some cases (as we’ll show in Section 6.2),
pDNS and CT footprints of phishing domains becomes available be-
fore their content is which can improve detection latency compared
to content-based approaches and tools. Other sources to identify
phishing include domain registration data. While domain registra-
tion can also provide an earlier peak, in practise, it is increasingly
hard to acquire a complete set of registration data [50] that can
allow early detection.

Previous work [57] finds that it is generally impossible to dif-
ferentiate between benign sites and phishing sites based on the
content of simple X.509 certificates features alone. However, such
work looked at individual certificates of phishtank domains with-
out using aggregate or temporal features extracted from CT logs
that can indicate longer lived campaigns. In this work, we combine
aggregate and historical certificate data taken from CT to derive
our observations and insights.

Second, CT logs is a free and accessible data source that anyone
can tap into and get an early peek of upcoming phishing domains
(new, or old and revived). Other sources to identify phishing include
WHOIS and DNS records. While WHOIS records can provide an
earlier peak, in practise, it is increasingly hard to acquire a com-
plete set of registration data that can allow for early detection. On
the other hand, pDNS data is widely available with some services
providing free access to their APIs [11].

6 CANWE PREDICT PHISHING DOMAINS?
As we have seen in our analysis, CT, certificate and pDNS traces
can provide distinguishing characteristics that can help in content
agnostic prediction of phishing domains. We use these character-
istics and insights to derive machine learning features to evaluate
the usefulness of our observations. In this section, we present our

9While the small percentage of squatting discovered may seem surprising, we note that
previous work [79] observe that less than 1% of phishtank domains utilize squatting.
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Figure 11: Summary of results

Feature category FPR
Lexical 24%
pDNS 5.9%
CT 9.8%
All 0.3%

Table 1: Performance of different feature categories

evaluation of the features, and in Section 6.2, we perform live ex-
periments on newly added domains to CT, and show that we are
able to predict phishing domains before VT.

6.1 Experiments
Datasets.We compiled fresh benign, and phishing datasets in April
2021 in a similar data collection and cleaning processes presented
in Section 3. We used them to create benign and phishing datasets,
both comprising of 12K domains. It should be noted that both
datasets are disjoint from the datasets we presented in our analysis
indicating the generalizability of features across different datasets.
Features and classifiers Table 2 summarizes the features we used
based on the insights derived from our analysis. As for classifiers,
we use Random Forests (RF) [31] for classifying benign and phishing
domains. Random forests are an ensemble learning algorithm that is
an improvement over decision trees. Instead of performing splits on
one feature as in decision trees, it uses a subset of features on each
split. We also experimented with several classification algorithms
including decision trees [68], SVMs [77], and regression models,
and found that RF outperform other algorithms.

We used the scikit-learn module (python 3.9.0) to carry
out the classification experiments. For training and testing, we
use 10-fold cross validation, where all datasets are divided into
10 subsets, 9 of which are used for training and 1 is kept for test-
ing. The process is iterated 10 times and the average is taken so
that all subsets are tested. As evaluation metrics, we use the pre-
cision, and recall. Precision measures the proportion of the identi-
fied positives that is actually correct (TP/(TP + FP)). Recall mea-
sures what proportion of actual positives was identified correctly
(TP/(TP+FN )). For completeness, we also present the False Positive
Rate (FPR = FP/(FP +TN )).
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Results. Figure 11 summarizes our results for 3 experiments where
we vary the number of benign and phishing domains. We get iden-
tical results when we use 12K phishing and 12K benign, or 12K
benign and reduce phishing to 7K. For both cases, we get phishing
precision and recall of 98%, and 90%, respectively. We also achieve
higher benign precision and recall at 98% and 100% respectively.
While this indicates that a small percentage of phishing domains
are undetected, the high precision of phishing indicates that what
is predicated as phishing is very likely phishing. This increases the
confidence of the prediction. A smaller dataset of 7K benign and 7K
phishing slightly reduces the phishing recall to 87% and the benign
precision to 96% , but phishing precision is still very high at 99%.

Table 1 demonstrates the importance of each feature category
on the classification FPR. Using our lexical features alone results in
24% FPR. Using a pure pDNS or CT classifiers results in 5.9% and
9.8%, respectively. The lowest FPR is achieved when all features are
used together resulting in 0.3% FPR.

6.2 Live experiment
To explore the feasibility of content agnostic prediction, we imple-
mented a proof of concept prototype system to classify domains in
CT log stream from CertStream [34] near real-time and also cross
validate a subset of detected predicted phishing domains periodi-
cally against VT/GSB. On average, our system process 4.4 million
domains from CT per day. We process the latest set of documents
from CT logs roughly every 10 minutes. Each batch contains on
average 32K domains. We follow the following process to classify
them.

• We maintain a list of Alexa top one million domains con-
sistently appeared in the last year and filter these domains
from the above mentioned batch. The rationale is that these
domains are highly likely to be benign. On average, this
filtering reduces the target domain set size by 2% from the
original set.

• We maintain a list of public apex domains compiled from
publicly available lists such as browser public suffix list 10 [7],
CDN lists [2, 9], popular webhosting domains or proxy ser-
vices. We filter out the domains whose apex domain is in the
public apex list. The rationale for doing this step is that these
domains are not under the control of the public apex domain
and the certificate features of the public apex domains are
not specifically related to these domains. This filtering re-
duces the dataset by 8% on average from the original set.
This results in around 25K domains per batch to classify.

• We then collect certificates for the target domains and extract
features for them. It takes roughly 25 seconds on average
to process 25K domains. Extracting their features is done in
parallel. We measured the time to extract our features for
25K domains. It takes 0.050 seconds at the median, and 0.0564
seconds at the 75th percentile to extract features using our
python implementation on a commodity virtual machine
environment.

• Finally, using the extracted features, we utilized our trained
classifier to predict the label of these domains.11

10We select only the effective second level domains.
11For the live experiment, we trained the classifier with the balanced datasets.

Figure 12: Cross checking results against VT/GSB.

To measure the effectiveness of the real-time classifier, we se-
lected all 492 phishing domains predicted by our classifier for one
batch of domains on Jan. 28th 2021. The reason we restrict our cross
checking to one batch is that we first manually verify predicted
phishing domains are in fact phishing, which is a time consum-
ing task. Our manual inspection identified 21 false positives. We
excluded them from the validation task. In order to validate the
proactiveness of our classification, we scanned and compared re-
maining predicted phishing domains (471) against VT and GSB
daily. Figure 12 shows the number of phishing domains detected
daily by VT and GSB from Jan. 28th to Feb. 4th 2021. Each bar
depicts the number of phishing domains marked by VT/GSB from
our predicted list. The spike in the second scan is likely due to the
fact that VT scanners update their engines based on the domains
seen on the previous day. We observe a steady increase of 45 new
domains being detected over the seven day period. Table 3 shows
a sample of phishing domains predicted by our classifier that are
failed to be detected by VT/GSB during the seven day study period.

We observe several interesting results from this experiment. Af-
ter seven days of cross checking, as shown in Figure 12, VT/GSB
was able to detect only 320 domains from our predicted set, indicat-
ing the concerning fact that VT/GSB are still lagging in detecting
phishing domains as they rely on content to make the decision. Our
manual inspection of predicted phishing domains that are not de-
tected by VT/GSB (151 domains) show that most of these domains
either utilize evasive techniques or impersonate popular brands
such as Paypal, Amazon, and Apple but they are still at their early
stage of web hosting. For example, as shown in Table 3 some web-
sites are either under construction or parked. These inspections
indicate that they are highly likely to be used for phishing attacks
in the future. We also observe that a number of predicted phishing
domains are detected by VT/GSB only after days, demonstrating
the proactiveness of our approach and the improved detection la-
tency we achieve compared to VT/GSB. A key reason for this is
that VT/GSB rely on content and/or user activity in order to detect
phishing domains whereas our approach can predict using content-
agnostic features which are available even before the content is
published or widely accessed.
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Feature Name Description Type
CT Logs Temporal Features

Lifetime The difference between the expiration date of the last certificate and the issuance
date of the first certificate

Numerical

Inter-arrival time The time gap between the issue dates of every two consecutive certificates of a
domain

Numerical

Number of certificates The number of certificates obtained by a domain during its lifetime Numerical
CT Logs Certificate-Based Features

SAN list size The number of domains in the SAN field of a certificate for one-certificate domains,
or the average number of domains in its SAN field from all certificates for multi-
certificate domains

Numerical

Issuers The distinct set of issuers associated with the certificates related to a domain Categorical
Validation type The most common validation type of the certificates associated with the domain

including EV, OV and DV
Categorical

Validity period The average validity period of the certificates associated with the domain Numerical
pDNS Features

Duration The time gap between the first seen and last seen records for a domain in the pDNS
repository

Numerical

Number of IPs The number of IPs on which the domain is hosted during the study period Numerical
Number of queries The number of times the domain is recorded in the passive pDNS repository, which

is proportional to the popularity of the domain
Numerical

Number of name servers The number of authoritative name servers associated with the domain Numerical
Name server match Does at least one name server domain matches with the domain name? Boolean
Number of SOAs Number of SOA domains associated with the domain Numerical
SOA match Does at least one SOA domain matches with the domain name? Boolean
Number of domains The average number of domains hosted on all hosting IPs of a domain Numerical

Lexical Features
Relative entropy The entropy of the characters in the domain name based on the Alexa top 10K

domains
Numerical

Dictionary entropy The dictionary-based entropy of the domain name Numerical
Domain length Length of the domain name Numerical
Number of subdomains Number of subdomains in the domain name Numerical
Number of dashes Number of dashes in the domain name Numerical

Table 2: Summary of features used

Domain Owner Issuer Hosting Provider Brand Status
vyoutube.com Privacy Protected Let’s Encrypt Confluence Networks Youtube Parked
instagramfor-fb.ml Not Available Let’s Encrypt OC1-Mochahost Facebook Under construction
l0gcahsbc.com Privacy Protected cPanel VenomDC HSBC cgi-bin exposed
cuenta-netfiix.ru Privacy Protected Let’s Encrypt Ihor Hosting Netflix NX domain
supportt-paypal.com Privacy Protected Let’s Encrypt Amazon PayPal Up for sale

Table 3: A sample of predicted phishing domains not detected by VT/GSB as of Feb. 4th 2021

7 LIMITATIONS
One key challenge is acquiring clean groundtruth datasets. For
the benign and phishing datasets, we cross checked our collected
domains with external services such as VT, which uses a large
number of blacklisting and scanning services (including GSB, and
COMODO site inspector, etc). However, consistent with previous
findings [67], we noticed that sometimes those sources maintain
stale information, as sometimes benign domains are misreported.
We address this issue by analyzing historical VT data in addition to

the current online VT results. We also performed a significant load
of manual checking when in doubt regarding some domains.

Another limitation is detecting phishing URLs. When a domain
is hosted on a popular hosting service, or a popular public domain
such as github.io, where anyone may create their own subdomains,
querying certificates will return those of the popular public domain.
Another related issue is URL shortening, which is increasingly
popular for phishing campaigns. This opens the door for future
work direction on how to identify phishing for such cases.
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As with other machine learning approaches, periodically re-
training detection classification models is mandatory to maintain
accuracy and performance due to concept drifts. Since our feature
set is small, and is not computationally expensive, retraining can be
performed periodically utilizing an active learning approach. For
example, as we confirm more phishing domains using our approach
and content-based analysis, we can use the newly discovered do-
mains as well as those available from external sources for retraining,
and thus improve the classifier performance over time.

8 RELATEDWORK

8.1 Content-based phishing detection
Approaches based on content analysis are vast. Whittaker et al. [85]
developed a classifier that analyzes millions of pages a day, examin-
ing the URL and the contents of a page to determine whether or not
a page is phishing. These methods [78, 85, 87] utilize features from
the web page content itself to train a machine learning model to
detect phishing URLs. For example, phishpedia [51] identifies logos
on webpage screenshots and matches logo variants with the cor-
responding brand to identify phishing pages. While they are quite
accurate, it is quite time consuming and resource intensive to train
classifiers based on the content of web pages. Also, cloaked phish-
ing domains can escape content-based analysis [25]. Therefore, a
content agnostic approach based on other available data sources
can aid previous work. Tian et al [78] proposed an approach to first
detect squatting domains such as combosquatting, bitsquatting,
TLD squatting and homophgraphs from passive DNS data and then
train a content based classifier to identify phishing websites from
the detected squatting domains. We have used this work to measure
the percentage of squatting used in our datasets. While useful and
can red flag squatting domains, a higher percentage of phishing
domains are not detected (as they don’t use squatting), but can be
otherwise caught using pDNS- and CT- based features.

8.2 Non-content based phishing detection
These methods utilize features other than content based features
such as URL/domain lexical features, WHOIS information, DNS
information and hosting information [27, 28, 40, 47, 48, 53, 75, 81].
Most of these prior approaches try to classify URLs, whereas we
focus only on domain names themselves which makes the problem
harder as we have limited information in domains compared to
URLs. Further, a key concern on prior work is that the type of
datasets used are inadvertently biased with respect to the features
based on the website URLs. We now describe some of the recent
work in this area to make the related work complete. Bahnsen et
al. [27] proposes machine learning models to predict phishing sites
given URLs. They utilize two million known phishing and benign
URLs to train a random forest classifier and a LSTM network to
predict phishing domains. Shirazi et al. [75] uses features mostly
related to domain names themselves, but they utilize a feature that
checks if the domain name matches the web page title. Kumar
et al. [47] proposes a context-free grammar based algorithm that
models inconsistencies in domain names of banking websites and
use it to generate potentially impersonating domains, which are

later classified into defensive, malicious, suspicious and unrelated.
Transparent phish [46] proposes a machine learning classifier that
utilizes network-level features to detect MITM phishing web pages.

8.3 CT-based malicious domain detection
With the browser endorsement towards HTTPS on all sites, even
phishing sites are forced to obtain certificates to present pages un-
suspecting to general users. Hence, CT logs should be useful to
detect phishing domains. There are several proprietary solutions
such as Facebook [20] and CertSpotter [23], open source solutions
such as phishing catcher [15] and solutions from academia such
as CT-Honeypot [73] that provides notification services to users
to get information about primarily combosquatting domains (e.g.
paypal-mysite.com), Sakurai et al.’s approach [71] that clusters cer-
tificates with similar CNs to identify phishing domains and Drichel
et al.’s approach [38] trains a random forest classifier utilizing di-
rect certificate features and lexical features. However, it is not clear
what the detection classification performance for the clustering
based approach and the TPR of Drichel et al.’s approach is quite
low. While CT-Honeypot relies on content based classification, and
the certificate clustering and Drichel et al.’s approaches rely on the
certificate features to train classifiers. The remaining approaches
mentioned above utilize a rule based approach to filter squatting
domains. While they are useful to spot likely phishing domains
early, they are also inundated with many false positive notifica-
tions that make security administrators life harder. Further, rule
based approaches are difficult to maintain as one needs to manually
change as Internet miscreants change their phishing tactics.

8.4 X.509 certificate based phishing detection
There are a number of past research that utilizes X.509 certificate
datasets to detect phishing URLs/domains [37, 59]. While these ap-
proaches do utilize X.506 certificate features, our work significantly
differs from these approaches due to several reasons: (1) Most of
previous work rely on Alexa top list to create the benign data set,
which can be biased as we have seen in our analysis, (2) In addition
to X.509 certificate features, we utilize temporal aggregate CT logs
as well as pDNS and lexical features in order to classify domains
with high accuracy.

8.5 Malicious domain detection
There have been many research efforts in the past to detect mali-
cious domains using DNS data [44], HTTP logs [30, 54], and enter-
prise logs [66]. They broadly fall under two categories: classification
based [30] and inference based [44, 54]. In a classification based
approach, features related to domains are extracted from the above
mentioned sources and a binary classifier is trained to mark each
domain as malicious or benign. Inference based approaches, on
the other hand, build a graph of domains under consideration and
infer the maliciousness of domains based on known malicious and
benign domains. While each approach has pros and cons, their
goal is to find any type of malicious domains, whereas we focus
on phishing domains in this study. Further, these schemes are en-
riched using auxiliary information such as Whois information [41],
IP ASN information [55], IP geolocation information, and hosting
information. In our study we mainly focus CT log based features
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and our goal is to detect phishing domains as early in their domain
life cycle as possible.

9 CONCLUSION
In this paper, we create, and thoroughly verify phishing and realistic
benign domain datasets. We provide an extensive analysis and com-
parison using their pDNS, CT traces and lexical characteristics. Our
analysis provides various insights and sheds light on how phishing
domains can be distinguished from benign domains, even when
they are not Alexa top domains. Our analysis paves the way for
content agnostic prediction approaches. To evaluate the usefulness
of our observations, we extract features that we use to train a ran-
dom forest classifier and we indeed show high precision and recall
for both benign and phishing domains. We also demonstrate the
possibility of building proactive detection solutions based on CT
logs which can detect phishing domains even before mainstream
tools like VT.
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