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We propose to identify compromised mobile devices from a network administrator’s point of view. Intuitively,

inadvertent users (and thus their devices) who download apps through untrustworthy markets are often lured

to install malicious apps through in-app advertisements or phishing. We thus hypothesize that devices shar-

ing similar apps would have a similar likelihood of being compromised, resulting in an association between

a compromised device and its apps. We propose to leverage such associations to identify unknown compro-

mised devices using the guilt-by-association principle. Admittedly, such associations could be relatively weak

as it is hard, if not impossible, for an app to automatically download and install other apps without explicit

user initiation. We describe how we can magnify such associations by carefully choosing parameters when

applying graph-based inferences. We empirically evaluate the effectiveness of our approach on real datasets

provided by a major mobile service provider. Specifically, we show that our approach achieves nearly 98%

AUC (area under the ROC curve) and further detects as many as 6 ∼ 7 times of new compromised devices

not covered by the ground truth by expanding the limited knowledge on known devices. We show that the

newly detected devices indeed present undesirable behavior in terms of leaking private information and ac-

cessing risky IPs and domains. We further conduct in-depth analysis of the effectiveness of graph inferences

to understand the unique structure of the associations between mobile devices and their apps, and its impact

on graph inferences, based on which we propose how to choose key parameters.
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1 INTRODUCTION

ISPs play an increasingly important role in preventative cyber security [9, 21]. One emerging attack
vector that can be effectively tackled at the ISP level is the detection of compromised mobile devices.
Recently, researchers proposed to identify compromised devices from an ISP’s point of view [33, 60,
76]. ISPs have direct access to key network traces and information, which enables them to perform
early detection of compromised mobile devices. Once detected, ISPs can inform their customers
including organizations so that they can take proper actions [16].

Indeed, organizations have encouraged the use of personal mobile devices in workplaces, in-
creasing the security incidents involving mobile devices. A recent study shows that one in
three organizations has faced a security incident due to compromised devices having malicious
apps [63]. Such devices may leak sensitive information or conduct unauthorized financial transac-
tions [20, 49, 50, 60, 69]. A key challenge in mitigating such security threats is to accurately detect
compromised devices and take action. As organizations have little control over mobile devices and
do not have access to all mobile network traffic, it would be more effective to do the detection at
the ISP level.

A variety of techniques have been proposed in the literature to detect malicious apps, most of
which rely on code analysis [20, 23, 33, 74] or network-based analysis [15, 41, 44, 52, 67]. However,
these techniques require the inspection of a vast number of apps created constantly and identifying
local features for each device and/or app. Therefore, a different method, that is not only robust but
also scales to a large network, is required to detect compromised devices.

Many apps have in-app advertisements promoting other apps or in-app purchases [57]. While
using such apps, users are often led to download related apps and potentially fall victim to drive-by

download attacks [29, 36, 37, 51]. Furthermore, many users also tend to install apps not published
in official app stores such as Google Play. For example, in some countries such as China, users
are blocked from accessing Google Play and thus have to use other stores with weaker security
practices [31, 66]. Users in such alternative marketplaces are often more exposed to potentially
malicious apps with targeted recommendations based on their past installation history.

Motivated by the above observation, we hypothesize that there exists a homophily relationship

between devices and their installed apps so that devices sharing similar apps would have a simi-
lar likelihood to be compromised [37, 51]. We thus formulate the compromised device detection
problem as a graph-inference based classification task.

For an ISP to apply graph inference to mobile network data, there are four key challenges that
need to be addressed including (1) identifying mobile devices and apps from the traffic, (2) deriving
meaningful associations that could be applied to detect compromised devices, (3) collecting a small
set of groundtruth, and (4) choosing effective graph-inferences algorithms with proper parameters.

To identify mobile devices and apps, we propose a data-driven approach. It is often not straight-
forward to identify which devices use which apps because the ISP does not have any control over
the apps running on devices and multiple apps are often simultaneously active on each device [61].
Motivated by app fingerprinting approaches [39, 61], we propose to use source IP (device) and app
string/TLS certificates (app) in the traffic (Entity Extraction in Figure 1).

Most activities on mobile devices incur through apps and most apps require network connec-
tions between devices and their hosting servers while being downloaded, installed, or executed.
We thus propose to leverage device-app associations and model the communication involving de-
vices and apps as a bipartite graph, called a device-app graph, where one side is the set of devices
(i.e., users) and the other is the set of apps (Graph Building in Figure 1).

Graph-inference approaches require a small set of groundtruth to train a classifier and expand
the limited knowledge to detect unknown compromised devices (i.e., devices having unknown yet
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Fig. 1. DeviceWatch workflow.

potentially malicious apps). Given the vast number of unknown apps and little, if any, knowledge
on devices in practice, it is often hard to build a ground truth set. We first collect ground truth sets
for apps and construct ground truth sets for devices (Groundtruth Building in Figure 1). Then, to
infer whether an unknown device is compromised, we adapt three well-known algorithms: Belief

Propagation (BP) [35], Label Propagation (LP) [54, 75], and Node2Vec [24] (Graph Inference
in Figure 1).

The effectiveness of graph inference depends on the strength of association between nodes in the
graph [30]. Unlike other applications where it is relatively straightforward to derive associations
(e.g., a malware-infected machine and its activities controlled by command & control servers), it is
quite challenging to derive such strong associations between devices and apps due to the fact that:
(1) it is often hard for apps to interfere and taint other apps; and (2) user interactions are needed to
take any action. Using a 5-terabyte anonymized real mobile network dataset provided by a mobile
service provider, We empirically verify our hypothesis that, to a certain extent, there in fact exist
associations that can be used to correctly identify compromised devices.

We further study the effect of the relatively weak associations in a device-app graph on graph
inference. In doing so, we focus on the behavior of BP, as it performs best on our device-app graph.
Concretely, we provide in-depth analysis on the topological similarity and differences between a
device-app graph and domain-IP resolution graphs from active DNS data [30] and their impact on
the behavior of BP. Given the unique graph structure of a device-app graph, we suggest how to
choose proper BP parameters to magnify the relatively weak associations.

Finally, we investigate if the detected devices exhibit undesirable behavior in terms of privacy
leakage and access to risky domains and IPs.

In sum, we make the following main contributions. First, we propose DeviceWatch, a data-driven
approach with graph inference for ISPs to identify unknown compromised devices at large

scale. In doing so, we propose to leverage an intrinsic association between mobile devices and
their apps. To the best of our knowledge, this is the first attempt to use such associations to detect
compromised mobile devices. The key advantage is that it is independent of app/device-specific
features such as devices’ models, versions, or app types (e.g., phishing, malware) and it only re-
quires a small set of groundtruth to operate. DeviceWatch thus detects unknown compromised
devices at a large scale without time-consuming investigation on individual devices.

Second, we propose a fingerprinting approach that uses source IPs and app string/TLS certifi-
cates to identify devices and apps from network traffics, the results of which enable us to build a
device-app graph.

Third, through experiments over a large-scale real-world dataset, we show that our approach
can effectively detect compromised devices in multiple aspects: ROC-AUC, Precision-Recall,
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coverage (Section 4), privacy analysis (Section 5.1), and network infrastructure analysis (Sec-
tion 5.2). Specifically, we achieve nearly 98% AUC in detecting compromised devices, while we
expand our limited knowledge on known compromised devices to further identify as many as 6 ∼
7 times devices not covered by the ground truth. We show that the newly detected devices, most of
whose apps are not known malicious apps, are leaking highly sensitive information in their traffic,
and they tend to frequently access risky IPs and domains [4, 25].

Finally, we investigate the unique graph structures of the association between devices and their
installed apps, and suggest the choice of key parameters of belief propagation to effectively detect
unknown compromised devices.

The remainder of the paper is organized as follows. In Section 2, we review related work. Sec-
tion 3 describes our proposed approach. Section 4 presents our experimental results. We provide
post-analysis on newly detected devices in Section 5. Additionally, we provide a discussion on
possible limitations of our approach in Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

Malicious App Detection. Malicious app detection research falls into two categories: static/
dynamic code analysis and network analysis. Static analysis derives signatures from app binaries
based on features drawn from known malicious apps [5, 71]. Dynamic analysis meanwhile
monitors app behavior such as privacy leakage or API calls [20, 70]. Unlike PCs, however, it is
often hard to perform run-time analysis on mobile devices due to limited resources [38]. Network-
analysis approaches detect anomalous network footprints using traffic patterns such as packet
size [15, 52, 67, 73]. However, since these approaches often depend on each device- or app-specific
features that can be easily obfuscated so that they cannot be applied for general purposes.

By contrast, our approach identifies unknown compromised devices through graph inference
without relying on device- or app-specific features. It enables a network admin to quickly manage
possible threats encountered at a large-scale without doing expensive analyses on each individual
device on the network.

Mobile Security. A few research efforts approach mobile security from a network admin’s point
of view. Lever et al. conducted a large-scale network level analysis of mobile malware using the
DNS traffic [33], which shows the infection rate in real traces. However, they do not provide a
solution to identify mobile threats. Sharif et al. proposed a proactive approach that predicts if
a user is connecting to a malicious domain or web content by observing her mobile browsing
behavior [53]. In this paper, we focus on apps causing devices to be compromised rather than
domains.

App Fingerprinting. The goal of app fingerprinting is to recognize apps based on the network
traffic they generate [17, 39, 47, 61, 62]. Supervised approaches are typically employed with features
such as app-identifying tokens in HTTP headers [17, 39] or TCP traffic patterns [57]. Recently, Van
Ede et al. [61] proposed a semi-supervised approach by clustering app traffic based on destination
features including TLS certificates exchanged between apps and servers. However, this approach
is not directly applicable to our problem settings, where most devices run multiple apps simulta-
neously (violating one of the key assumptions in [61]). We thus propose to employ a data-driven
approach with which we identify an app based on app strings and certificates.

Graph-inference Approaches. Graph-inference approaches have been employed in various se-
curity contexts, each of which builds a certain type of graph to capture the association between
different entities, e.g., file-machine or file-relation graphs [12, 54, 55], host-domain graphs [35, 42],
knowledge graphs [40], and domain-IP graphs [30]. In our context, as mentioned before, it is
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Fig. 2. Simplified IP packet with fields used for data extraction.

often hard to derive strong associations between mobile devices and apps. However, we show that
the weak device-app associations can be amplified to successfully identify compromised mobile
devices by carefully tuning the underlying graph-inference process. Further, the previous graph-
inference approaches often employ one specific algorithm [12, 35, 54] or stated specific parameter
values work well without further description [12, 55]. In contrast, we compare different graph in-
ference algorithms, study the unique topological characteristics of device-app graphs, and analyze
how such uniqueness may affect the behavior of graph-inference approaches.

The most relevant research to ours is CreepRank which utilizes device-app association to iden-
tify creepwares [51]. However, CreepRank only focuses on detecting a special type of apps (i.e.,
creepwares) on Android devices. Also, CreepRank only considers devices with a security agent
(i.e., security-aware users). In contrast, we focus on identifying inadvertent users and their com-
promised devices without limiting the types of apps or device platforms. Also, our dataset is more
comprehensive and representative of typical mobile users, as it is directly collected from an ISP.

3 DEVICEWATCH: THE PROPOSED APPROACH

This work aims to identify unknown compromised mobile devices given a small set of known ones
and the network traffic data of mobile devices collected by a service provider. One apparent ap-
proach to detect compromised devices is to see whether they have known malicious apps. However,
this approach fails to detect compromised devices having previously unknown malicious apps [53].
We thus propose to employ a graph inference approach that can determine whether an unknown
device is compromised by analyzing its connections to known devices.

Recall that there are four main challenges we want to address. In this section, we describe how
our approach, DeviceWatch, tackles each challenge. Figure 1 illustrates the workflow of Device-
Watch. DeviceWatch (1) first extracts information about devices and apps from traffic (Section 3.1),
(2) defines a device-app association (Section 3.2), (3) builds a groundtruth for devices (Section 3.3),
and (4) applies graph-inference algorithms to output a final score and to decide the level of compro-
mise for devices (Section 3.4). In the following subsections, we describe each stage of DeviceWatch
in more detail.

3.1 Entity Extraction from Mobile Network Traffic Dataset

Our mobile network dataset contains 5-terabytes of 5-days mobile network traffic from a Chinese
mobile service provider. Note that ISP does not have any control over the apps running on devices
so that it is not straightforward to identify which devices use which apps and build a device-app
graph directly from the traffic. In the following, we describe how we extract information about
devices and apps from the dataset. Figure 2 shows the fields we use from IP packets. The packet
is timestamped. The app string and certificate are important in extracting app information; the
source IPs and timestamps are important to extract device information.

3.1.1 Device Extraction. Identifying a device from mobile traffic is a challenging problem [33].
Following previous research [33, 39, 57, 61, 69], we consider each source IP address as a device. Note
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Fig. 3. The lifetime of extracted devices.

Table 1. Example Keywords to Extract Apps

Type Example Keywords

App String in HTTP header packagename, appname, apppkg, app_identifier, x-requested-with, ap-
kname, appPkg, appId, user-agent

Domain name in certificates commonName, organizationName, organizationalUnitName, subjectAlt-
Name.

that multiple devices may use the same IP address. Especially, one device may not use the same
IP address across multiple days due to the dynamics of mobile IPs [33]. To avoid multiple devices
being identified as one device, we further consider a packet daily timestamp following a previous
study [33]. Specifically, we define a device using a packet daily timestamp along with the source
IP (e.g., 10.x.x.x_2021_08_01). By doing so, we extract 301,428 devices from our traffic. Figure 3
shows the CDF of the lifetime of devices where the x-axis represents the lifetime of devices in the
traffic and the y-axis represents the corresponding CDF (i.e., the portion of devices). We measure
the lifetime of a device by the difference between the first packet timestamp and the last packet
timestamp of the device where there is no gap between packets [57]. The figure shows that 90%
of devices have traffic less than 100 minutes and the majority of the lifetime is only a few hours.
Given the continuous traffic and a short period of the lifetime, we believe that the identified device
is not likely to represent multiple devices.

3.1.2 App Extraction. One may utilize various approaches to identify apps generating the ob-
served traffic [2, 39, 57, 61, 69]. Despite an increasing trend in the usage of HTTPS, developers are
allowed to change the configuration to use HTTP [7, 8, 10, 19, 43, 45]. Indeed, our dataset includes
both HTTP and HTTPS traffic. We thus utilized both types of traffic to identify more apps and
enrich our ground truth. In the following, we describe how we extract app information.

(1) App Extraction using App Strings in HTTP Traffic: This approach extracts app informa-
tion revealed in HTTP headers. Specifically, we extract the IP packets containing the app string
field in the header. We heuristically extract fields containing app strings using keywords. Exam-
ples of such keywords are summarized in Table 1. Note that we only present a few examples of
keywords, as the keywords are similar yet have small variations such as apppkg and apppkg1.

The app string often contains the name of the app package file, for example:

GET /open/confirm.htm?pkg= com.sina.news
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We assume each unique app string corresponds to an app. By doing so, we gather 5,870 app strings
from our dataset.

(2) App Extraction using Certificates in HTTPS Traffic: Recent research suggests that apps
can be identified using serial numbers in TLS certificates in HTTPS traffic [61]. From our dataset,
we thus extract server certificates to identify corresponding apps. The serial number is unique
for each certificate issued by a Certificate Authority. Hence, we consider each serial number as
an app. Note that a certificate is indicative of an app only if it is a non-cruise certificate, that is,
the certificate contains domains belonging to a single entity. A cruise certificate, usually issued
by content delivery networks such as CloudFlare and Akamai, packages many unrelated domains
into a single certificate [11]. We inspect the subject fields in a certificate related to a registered
domain. Examples of such fields in certificates are summarized in Table 1. Then, we heuristically
filter out cruise certificates and identify those non-cruise certificates that are uniquely associated
with a single domain. By doing so, we gather 4,501 certificate serial numbers.

To create a unique app name, app developers often use the reverse domain name of the host
domain (e.g., com.youdao.dict is an app hosted in dict.youdao.com) [18]. Accordingly, for each cer-
tificate serial number identified above, we further inspect if the reversed domain name associated
with the certificate matches any of the 5,870 app strings. We also query it to 16 popular Chinese
app stores [66] to see if it matches any app string in the app stores. If it matches, we replace the
certificate serial number with the app string; otherwise, we treat the certificate serial number as
an app string. In doing so, we replace 418 certificate serial numbers with app strings, which leaves
4,083 certificate serial numbers used as app strings in HTTPS traffic.

Finally, from the above two steps, we are able to identify 9,953 (5,870 app strings + 4,083 certifi-
cate serial numbers) apps.

Each app often has a specific traffic pattern to be used for identification [57, 61]. To investigate
the reliability of our app extraction method, we measure if each identified app consistently has
similar traffic patterns across multiple devices. Our intuition is that if different apps on different
devices are identified as one app (e.g., devices use different apps but all of them have one app
string), there should be different traffic patterns across different devices.

Recently, Van Ede et al. proposed to create a signature for an app using destination features such
as destination IPs, ports, or TLS certificates, and then they computed the Jaccard similarity between
the signature and unknown traffic to classify the traffic [61]. Using the threshold between 0.5 ∼
0.9, they showed that they could classify an app with acceptable accuracy (0.854 ∼ 0.919). Inspired
by [61], we use Jaccard similarity to measure how similar the traffic patterns are across devices
given the app string [28]. Note that we focused on HTTP/HTTPS traffic, and thus the destination
ports are either 443 or 80 in our dataset. Moreover, by our definition above, each app extracted
from HTTPS traffic is associated with one TLS certificate. This implies that the similarity measured
based on TLS certificates is 1 across multiple devices given an app. We thus use destination IPs to
measure the similarity.

While an app may communicate with various sets of destination IPs depending on the usage, it
has been shown that each app often has a unique set of destination IPs used only for the app. For
those apps used by more than one device (70% of the total), we thus compare the set of destination
IPs to compute a pairwise similarity of traffic patterns among devices having the same app. In
doing so, we first filtered destination IPs that are used for multiple apps. Then, we measure the
similarity between two devices for an app by the number of the common destination IPs over the
total number of destination IPs used for the app. Finally, we define an average traffic similarity
of an app by the average pairwise similarities for the app. For example, let us assume we observe
the traffic in Figure 4, where three devices have an app called com.app.string. Given the traffic,
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Fig. 4. Example traffic originated from three devices having the same app string.

Fig. 5. The CDF of the average traffic similarity.

the similarity values between device1 and device2 are 3/4 = 0.75; between device2 and device3 are
3/4 = 0.75; between device1 and device3 are 4/4 = 1. Then, the average traffic similarity of the app,
com.app.string, is (0.75 + 0.75 + 1)/3 = 0.833. Figure 5 shows that the CDF of the average traffic
similarity where the x-axis represents the average traffic similarity of each app and the y-axis
represents the corresponding CDF (i.e., the portion of apps among those used by multiple devices).
We observe that 70% of apps among those used by multiple devices have similarities above 0.5.
Note that the app with a low similarity such as 0.3 does not necessarily mean that the app is
not correctly identified (i.e., multiple apps are identified as one app), because a certain app may
have different traffic patterns depending on devices’ models [2, 61]. By default, we thus do not
filter any apps based on this similarity measure. On the other hand, a network administrator using
DeviceWatch may filter out apps with similarities lower than a certain threshold τsim depending
on her interest (e.g., false positive or false negatives). In Section 4, we will show the performance
while varying the threshold.

3.1.3 Assumption and Limitation on Entity Extraction. One of our data limitations is that we do
not have physical access to devices and their apps to investigate. Furthermore, multiple devices
run multiple apps simultaneously in our traffic. It gives additional challenges to identify a device
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or an app from the traffic, compared to related work where research was done in controlled envi-
ronments [57, 58, 61]. While our dataset reflects the practical scenarios, the limitation is that we
cannot directly verify the correctness of our device and app identification. However, note that our
work focuses on identifying compromised devices at an ISP level, not pinpointing the exact app
of each device. The important assumption we made is that each identified device/app belongs to
one entity. While we are confident that the identified device and app indeed belong to one device
and one app, respectively, from analyses in Figures 3 and 5, we also assume that a network admin-
istrator can further verify using orthogonal approaches, once compromised devices are detected.
For example, the administrator may do post-investigation for the detected compromised device if
it represents one or multiple devices by checking the phone number associated with the source IP
address.

On the other hand, we may not be able to identify certain apps (i.e., some apps on a device will be
ignored) if the app string does not present in HTTP, a certificate does not belong to a single entity
(e.g., cruise certificate). However, we argue that missing apps on the devices would not affect our
approach as our focus is on devices. False negative cases from missing apps will arise only when
a device is totally ignored due to no identified apps for the device, or a device is isolated from
the graph since its identified apps are not used by other devices. Meanwhile, any prior knowledge
about the apps in the network (e.g., an administrator can control running apps in an enterprise
network) may increase the coverage of apps and devices, but we consider it as beyond the scope
of our study due to our data limitation.

3.2 Bipartite Graph Building

A key challenge to detect compromised devices using an inference algorithm is to first identify
meaningful associations capturing graphically homophily relationships. We seek to define an as-
sociation that is able to create two distinct clusters: compromised and not-compromised devices
in the graph.

Mobile users mostly access contents through apps in their devices [58]. Our key insight is thus
that there exists an association between a device and its apps following homophily that can be used
to identify other compromised devices. Intuitively, if a device installs malicious apps, it is likely to
download/install other malicious apps [51]. Meanwhile, most apps require a network connection
between devices and their hosting servers while being downloaded, installed, or executed. Thus,
we argue that the likelihood of a device being compromised can be measured by analyzing its app
usage revealed in the network traffic.

We present a model to reflect the homophily relationship between a device and apps. Specifically,
we capture the association between devices and their apps through analysis of network traffic (as
an ISP has no direct access to devices) and model such associations as a bipartite graph.

We represent the associations between devices and apps as a bipartite graphG = (V ,E) where a
set of devices D = {d1, . . .dn } ⊂ V and a set of apps A = {a1, . . . an } ⊂ V are connected with undi-
rected edges e (di ,aj ), where di is a device and aj is an app. Figure 6 illustrates an example bipartite
graph. Each node inD may belong to one of three categories: not-compromised, compromised, and
unknown; and each node in A may belong to one of four categories: benign, malicious, suspicious,
and unknown. As illustrated, a compromised device may have edges with all types of apps. An
unknown device may have edges with suspicious, unknown, or benign apps. A not-compromised
device may have edges with benign or unknown apps, but not with suspicious or malicious apps.

Our bipartite graph drawn from the extracted entities (Section 3.1) includes 1,074,585 edges, i.e.,
a mapping between devices and apps (either app strings or certificate serial numbers). Figure 7
shows the Cumulative Distribution Function (CDF) of the number of devices where the x-axis
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Fig. 6. An example device-app bipartite graph.

Fig. 7. The CDF of the number of devices for all apps.

represents the number of devices having each app and the y-axis represents the corresponding
CDF (i.e., the portion of apps). Note that nearly 30% of apps have only one device. This is mainly
because app strings may also include the version, brand, or market names of the apps such
as com.sina.news-7.19.3, com.flypig.FindItPro.iphone, and com.bd.superfish.baidu, which we
consider individual apps.

Note that we aim to identify unknown compromised devices that may have installed unknown
malicious apps. The apps used by most devices, if not all, are not useful for our context because
we cannot claim a strong association between a specific device and such apps. For example, even
though popular apps such as Facebook are on every device, we cannot claim that all devices having
Facebook are equally compromised. Apparently, such apps will lead to false associations, and thus
false positives in a graph-based approach. On the other hand, we are more interested in the case
where device1 and device2 share specific sets of malicious apps that are not used in many other
devices, resulting in a strong association between the set of apps and the possibility of devices
being compromised. Similar to previous research using graph inference algorithms [6, 30, 35, 54],
we thus exclude popular apps to avoid a number of false positives which can be induced by false
association. To do so, we employ a data-driven approach. Concretely, we consider an app popular
if it is used by more than Np number of devices in the traffic. We vary Np between 1,000 and 10,000,
resulting in 1.4% ∼ 0.02% of apps being filtered as shown in Figure 7. We shall further discuss the
effect caused by this filtering in Section 4.3.1.
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Fig. 8. The CDF of the number of published app stores.

3.3 Ground Truth Sets and Definitions for Detecting Compromised Devices

Our approach requires small sets of ground truth about compromised and not-compromised de-
vices to apply graph inference algorithms. However, given the vast number of unknown apps and
little, if any, knowledge on devices in practice, it is often hard to build a ground truth set. We
first collect ground truth sets for apps (Section 3.3.1) and construct ground truth sets for devices
(Section 3.3.2).

3.3.1 Ground Truth Sets for Apps. Among various intelligence sources, we use VirusTotal
(VT) [64] to collect a ground truth set for apps, widely used in the literature [13, 31, 46, 53, 66]. For
each query, VT aggregates the responses from more than 50 engines, each of which categorizes
the query to malicious or benign.

To build a ground truth set, we first attempt to download android binaries from 16 popular
Chinese Android app stores [66] and iOS app store by searching the app strings extracted in Sec-
tion 3.1.2. Note that app strings are sometimes not searchable [39, 48] and we cannot pinpoint the
exact binaries for 4,083 certificate serial numbers (i.e., not matching to any app strings). We also
could not find some app strings matching to iOS app binaries, although certain app strings specifi-
cally indicate the iOS app (e.g., com.flypig.FindItPro.iphone). Among 5,870 app strings, 2,367 were
found in at least one of 16 app stores. Figure 8 presents the CDF (the y-axis) of the number of app
stores (the x-axis). Note that we verify that the binaries are indeed generating the corresponding
app strings by capturing network traffic while installing and executing binaries on two mobile
devices.1 We also verify that the reversed app name appeared in certificates in traffic generated by
binaries.

We upload the binaries to VT and check whether it is marked as malicious. Note that 29% of
app strings are published in multiple app stores, as shown in Figure 8. However, we observe that
the maliciousness of each app is the same regardless of the app stores where it is downloaded.
This observation agrees with that from prior research: the app string often correctly represents a
specific app [59, 66]. Furthermore, recent studies observed that mobile malware does not spread
by repackaging as much as before in a large-scale study on Android apps [66, 68]. We thus argue
that it is reasonable to rely on the app string to identify and evaluate each app.

Among 2,367 binaries, 1,711 apps are flagged as malicious by at least one VT engine and 656
apps are not flagged by any engine. Previous research suggests that evaluation based on VT may
have limited coverage or noise due to multiple reasons [13, 27, 32, 66]. To reduce potential false

1Samsung Galaxy Note4 and Sony Xperia Z3 Dual.
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Table 2. The Number of Bad Apps with Varying vt and Np Thresholds

�����������

App

popularity

VT
vt = 3 vt = 4 vt = 5 vt = 6 vt = 7

Not-filtered 1195 1060 955 845 764

Np = 10000 1190 1056 951 841 761

Np = 5000 1189 1056 951 841 761

Np = 1000 1178 1047 943 833 753

Table 3. The Number of Devices with Varying vt and Np Thresholds

�����������

App

popularity

VT
vt = 3 vt = 4 vt = 5 vt = 6 vt = 7 good

device

Not-filtered 45075 27522 24878 22853 15810 143552

Np = 10000 9052 6595 5619 4822 3348 92099

Np = 5000 7644 5962 5004 4245 3348 78820

Np = 1000 3050 2526 2153 1586 968 48999

positives, we label each app using thresholds as follows: If an app is detected as malicious by more
than or equal to vt number of engines among the 60 VT engines, we label the app as bad; if an
app is detected as malicious by fewer than vt engines, we label the app as suspicious; if an app
is not detected as malicious by any engine, we assume that the app is good; if we are not able to
find corresponding binaries, we consider the app as no-info.2

Table 2 summarizes the number of bad apps with various vt and Np thresholds.

3.3.2 Ground Truth Sets for Devices. Given the ground truth set for apps, we define a bad device

as one using more than or equal to N (Ab ) number of bad apps, where Ab is the set of bad apps;
we define a good device as one not using any bad or suspicious apps. With consideration of the
noise of VT, we take a conservative approach to use N (Ab ) = 2 as default. Table 3 summarizes the
number of devices given the ground truth set for apps.

3.4 The Graph-Inference Based Approach

To determine whether a device is compromised, we follow the guilt-by-association principle [30,
35, 51, 53, 55] which estimates the guiltiness of a node by propagating the prior knowledge on
some of the nodes in the graph, given the homophily relationship between nodes.

Given the bipartite graph and the prior knowledge about devices, we infer the probability of
unknown devices being compromised using the guilt-by-association principle. To do so, we model
each node i ∈ V as a random variable, xi , that can be in the set of states S = {дood,bad } so that the
badness and goodness of a node can be expressed by the probabilities P (Bad ) and P (Good ), respec-
tively, where P (Bad ) + P (Good ) = 1. Our goal is then to determine the probabilities P (xi = Good )
and P (xi = Bad ) for unknown devices by employing three popular graph-inference approaches
including (1) Belief Propagation (BP) [30, 55], (2) Label Propagation (LP) [54, 75], and (3) Un-
supervised node embedding (Node2Vec) [24] along with downstream supervised learning. Each

2For consistency reasons, we follow previous work [12, 55] in choosing “good” and “bad” as BP labels though they may

not sound technical.
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Table 4. Initial Scores of Nodes and Edge Potentials for BP

(a) Initial scores of nodes

P(Bad) P(Good)

Bad δ 1- δ
Good 1- δ δ

Unknown 0.5 0.5

(b) Edge potentials for BP

Bad Good

Bad ϵ 1 − ϵ
Good 1 − ϵ ϵ

approach outputs a final score for each node based on which we classify devices. In the following,
we describe how we apply graph-inference approaches in our context.

Belief Propagation. At each iteration, BP computes i’s belief that neighbor j is in statex j (mi j (x j )),
which is defined as:

mi j (x j ) =
∑

xi ∈S
[ϕi (xi )ψi j (xi ,x j )

∏

k ∈N (i )\j
mki (xi )] (1)

Concretely, there are three components to compute messagemi j (x j ): (1) initial belief scoreϕi (xi )
for i being in state xi ; (2) the product of all messages from i’s neighbors excluding j (i.e., i’s incom-
ing message vector from k ∈ N (i )); and (3) the edge potential between two neighboring nodes i
and j specifying the probability of i being in xi and j being in x j .

We assign the initial belief score for each node based on the ground truth labels (Table 4(a)).
Also, Table 4(b) represents the edge potential matrix.

Label Propagation. Let Y contain the one-hot encoding vector of the possible states xi ∈ S .
Initially, Y [i] = 1 and Y [j] = 0 for each labeled node i and unlabeled node j, respectively. At
each iteration, LP computes a score for each node based on the random walks to labeled nodes.
Formally, we define Tuu and Tul as matrix of probabilities to randomly walk from unlabeled to
unlabeled and unlabeled to labeled nodes in the graph, respectively. We estimate the probability
of each unlabeled node in each state xi as follows:

Ŷu = (I −Tuu )−1.Tul .Yl , (2)

where I is the identity matrix, and Yl is the vector for labeled nodes.

Node2Vec. We model each node i ∈ V as a d-dimensional feature vector by optimizing a neigh-
borhood preserving objective. We aim to learn a mapping function f from nodes to feature repre-
sentation. For each node i , we define N (i ) ⊂ V as a network neighborhood of node i generated
through a neighborhood sampling strategy. Node2Vec optimizes the following objective function
to maximize the log-probability of observing N (i ) for each node i:

max

f

∑

i ∈V
loд Pr (N (i ) | f (i )). (3)

Learned f is then used as feature vectors for downstream supervised learning algorithms such
as Random Forest to train a model; which is in turn used to compute a final score.

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Experimental Setup

Table 5 summarizes the notation for the parameters used.
BP Implementation: We implemented BP in C following the implementation in [35]. It only takes

1.25 seconds to run 10 BP iterations on average for our graphs.
LP Implementation: We implemented LP in [75] and empirically set the decay of the propagation

to 0.0001 and the number of iterations to 1,000.
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Table 5. List of Parameters for Experiments and Default Values

Notation Description Default

Np The threshold to define a popular app 1000

vt The threshold for the number of VT engines
detecting the app as malicious

5

τsim The threshold for the app traffic similarity 0.0

ϵ The edge potential parameter in BP 0.51

δ The initial score parameter 0.99

Node2Vec Implementation: We adapted the implementation3 [24] to generate features and used
Random Forest to train models as we empirically found it outperforms other supervised algorithms
including SVM, XGBoost, Ada Boost, Classification Tree, and Logistic Regression. We tune the
Node2Vec to use the following configuration: embedding size = 128, walk length = 80, and the
number of walks 10. With hyperparameter optimization, we utilize the following parameters with
the downstream Random Forest classifier: max_ features = 65, max_depth = 15, n_estimators = 10
and min_sample_split = 2.

Ground Truth Sets: In our bipartite graph, we have two types of nodes: apps and devices. Al-
though graph-inference can be used to classify both apps and devices in principle, we focus on the
classification of devices. We thus consider the badness/goodness of apps as unknown. Hence, the
inference is driven by two different sets of device ground truth labels: bad devices (DB ) and good
devices (DG ). The number of instances in each set is given in Table 3.

Handling Unbalanced Groundtruth: During the graph inference process, each node has two
scores representing its badness and goodness. For simplicity, we only mention the badness score
in this section. Essentially, at the initial stage, bad devices in the training set have high scores,
good devices in the training set have low scores, and devices in the testing set and apps have 0.5
scores, as defined by Table 4(a). Note that the unbalanced initial scores lead to a biased set (good
devices in our case) dominating the final scores [6, 30, 32, 35, 40, 53], which is undesirable as our
goal is to detect bad devices. Following the previous research using graph inference algorithms in
cybersecurity domains [6, 30, 32, 35, 53], we thus downsample good devices for the training set.
That is, we randomly choose the equal number of good devices in the training set to the number
of bad devices in the training set. Then, we use the remaining devices as testing sets. We perform
k fold cross-validations and compute the average of each performance measure.

Cross Validation: We randomly divide each groundtruth set into k folds and run algorithms k
times. In each run, we use one fold of bad devices as a testing set for bad devices (TESTB ) and the
remaining k−1 folds as a training set for bad devices (TRAINB ). We downsample k−1 folds of good
devices as a training set for good devices (TRAING ) and the remaining devices (DG - TRAING ) as
a testing set for good devices (TESTG ). Then, we run an algorithm to get the final scores of all
nodes. Devices in the testing set are classified based on their final scores. Specifically, we vary the
threshold for the final score, and classify a device whose final score is above the threshold as bad;
otherwise, we classify it as good. We then compute the true positive rate (TPR) as the number
of bad devices correctly classified to the total number of bad devices in the test set. The false

positive rate (FPR) is computed as the number of good devices that are misclassified to the total
number of good devices in the test set. Algorithm 1 describes the pseudo code of our evaluation
process. As we observe varying k has no significant difference, we report the 10-fold classification
results.

3https://github.com/aditya-grover/node2vec.
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ALGORITHM 1: Pseudocode for DeviceWatch Evaluation

DB : the set of bad devices in Table 3

DG : the set of good devices in Table 3

N (TRAINB ): the number of bad devices in the training set

N (TRAING ): the number of good devices in the training set

KFoldCrossValidation()

1: Split DB into k folds,
⋃k

j=1 Bj

2: Split DG into k folds,
⋃k

j=1G j

3: for j = 1 to k do

4: Set Bj as a testing set for bad devices, TESTB

5: Set remaining k − 1 folds of B as a training set for bad devices, TRAINB

6: Downsamplek−1 folds ofG as a training set for good devicesTRAING whereN (TRAINB ) =
N (TRAING )

7: Set remaining good devices (G - TRAING ) as a testing set for good devices, TESTG

8: TRAIN = TRAINB + TRAING

9: TEST = TESTB + TESTG

10: RunGraphInference(TRAIN ,TEST )
11: Compute TPR (Recall), FPR, Precision on the testing set
12: end for

13: Average TPR (Recall), FPR, Precision from iteration

RunGraphInference(TRAIN , TEST )

1: Initialize the scores of devices in TRAIN according to their labels (good/bad) and Table 4(a)
2: Initialize the scores of the rest of the nodes in the graph as 0.5
3: Run the graph inference algorithm
4: Classify the testing devices based on their final score after convergence

4.2 Comparing Graph-Inference Approaches

An important consideration at the early stages of detection is to identify which predictive model
would work well to infer compromised devices from graph-structured data. Figure 9 shows the
ROC curves for the three graph-inference approaches under consideration (BP, Node2Vec, and
LP), where the x-axis represents the FPR and the y-axis represents the TPR. The figure shows that
BP provides a low FPR, compared to LP and Node2Vec with RF. A few possible reasons why BP
performs slightly better are: (a) Node2Vec fails to capture labels into the embedding and may result
in inaccurate classification when two or more nodes have a similar structure but different labels,
and (b) LP takes the average of the neighboring node values, and fails to capture the homophily
relationships among neighbors. Further, we observe that BP is several orders of magnitude faster
than Node2Vec. We thus opt to employ BP to detect compromised devices and focus on analyses
drawn from BP in the following.

4.3 DeviceWatch with Belief Propagation

4.3.1 Device Classification Accuracy with Parameter Choices. Following the standard practices
on evaluating graph-inference approaches, to measure the performance, we present a series of
ROC curves where: the x-axis represents FPR, the y-axis represents TPR, and each point in ROC
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Fig. 9. A ROC curve for three graph-inference algorithms.

Fig. 10. ROC curves with various parameter setting.

curves represents different thresholds for final scores [12, 30, 32, 35, 40, 53, 54]. While doing so,
we vary the parameters in Table 5, which might have effects on the performance.

Varying the Definition of Popular Apps. Figure 10(a) shows the ROC curves with varying the
definition of popular apps. Although not significant, the figure shows that with less filtering such
as NP = 10000, FPR increases for a fixed TPR. This is expected because many devices, if not all,
using popular apps will be considered related, resulting in false associations [6, 30, 35]. Recall that
only 1.4% of apps are filtered with NP = 1000 (Figure 7). This means that filtering popular apps is
helpful in avoiding false associations, yet does not have a notable impact on the total number of
apps in the graph.

Varying vt Values. Note that there is no consensus on the right value for vt [27, 66]. We thus
show the results with various vt , i.e., vt = 3, 4, 5, 6, 7 in Figure 10(b). As the figure shows, there is
no significant difference on the FPR and TPR while changing vt , for vt ≥ 5. We thus use vt = 5
for further discussion in the following.

Varying Edge Potentials ϵ . Figure 10(c) shows the ROC curves while varying ϵ . Concretely, when
ϵ = 0.51, we achieve 0.92 TPR with only 0.004 FPR. Interestingly (as it is different from BP behavior
in other applications such as [30, 35]), our results are sensitive to ϵ , an edge potential parameter
of BP. As shown in Figure 10(c), as ϵ increases, FPR increases. Furthermore, we achieve the best
accuracy with low values of ϵ (e.g., 0.51).

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 9. Publication date: November 2022.



DeviceWatch: A Data-Driven Network Analysis Approach 9:17

Fig. 11. AUC vs the number of apps filtered with varying τsim (vt = 5, ϵ = 0.51).

Fig. 12. The Precision-Recall curve(vt = 5, ϵ = 0.51, Np = 1000).

Varying App Traffic Similarities τsim . While the low traffic similarity does not mean that apps
are not correctly identified [2, 61], an administrator may further filter apps for better confidence
on the identified apps. On the other hand, filtering a lot of apps and thus filtering a large number
of devices may increase false negatives. We thus show the trade-off between the area under ROC
curve (AUC) and the number of apps in the graph when varying τsim in Figure 11, where the x-axis
represents the average traffic similarity of each app, the left y-axis represents the AUC, and the
right y-axis represents the number of apps in the graph. As shown in the figure, the AUC greatly
decreases, when τsim = 0.8 and above, where almost 100 apps are filtered. In previous research
on app identification, it is shown that the traffic of apps can be correctly classified using τsim

between 0.5 and 0.9 [57, 61]. According to our results along with previous research, to achieve a
good balance between app identification, AUC, and the number of apps, a network administrator
may choose τsim between 0.5 and 0.8.

Precision and Recall Curve. While ROC curves provide us to help find an appropriate TPR at
an acceptable FPR, it is also important to measure precision and recall. We thus further present
the Precision-Recall curve in Figure 12. As shown in the figure, we can achieve a good balance
between precision and recall where we achieve 0.992 precision and 0.92 recall at best.

4.3.2 Device Classification Accuracy with Different Time Periods. To see if different behavior of
BP is caused by a specific data point or unique characteristics of mobile networks, we perform
experiments with varying the time range of our dataset. Specifically, we divide our 5 days dataset
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Fig. 13. ROC curves and AUC drawn from various time period setting.

Fig. 14. The number of newly detected devices when varying the seed size.

into (1) 1-day and 4-days datasets and (2) 2-days and 3-days datasets. Figure 13(a) shows that the
ROC curves drawn from various time periods with ϵ = 0.51 and Figure 13(b) shows the area under
the ROC curve (AUC) drawn from various time periods with various ϵ . Figures 13(a) and 13(b)
show that there is no significant difference between different time ranges on the best FPR/TPR
and the effect of edge potential parameter. In other words, our analysis generally holds in mobile
networks, not for a specific data point.

In Section 4.4, we present an in-depth analysis to demonstrate distinctive characteristics of the
mobile traffic data that lead to this behavior.

4.3.3 Device Classification Coverage. While we showed that our approach can achieve low FPR
and high TPR in detecting devices, it is also important to show how many unknown bad devices
can be detected beyond those in the seeds (i.e., known bad devices). Essentially, a naive baseline
approach of utilizing a blacklist is only detecting devices having previously known bad apps (i.e.,
those in our ground truth). However, our approach, in general, can expand the limited knowledge
greatly so that we detect 6 ∼ 7 times as many unknown bad devices not in the ground truth as
shown in Figure 14. In Section 5, we show that these newly detected devices indeed show risky
behavior.
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Fig. 15. AUC when varying ϵ for Mobile and DNS.

4.4 Measurements on the Unique Characteristics of Mobile Network Structure and

In-Depth Analysis of BP Behavior

Essentially, the key to the effectiveness of graph inference-based approaches is how the graph
is constructed (i.e., the graph structure). Specifically, the approach will work well depending on
(1) the well-defined association while reflecting homophily relationships and (2) how the prior
knowledge on a few nodes will be propagated to classify others. In Section 4.3, we show that we can
successfully identify bad devices using the graph-inference over the defined device-app association.
In this section, we will study the unique graph structure of mobile networks (i.e., bad devices
are close to each other compared to others yet all nodes in the graph are also relatively highly
connected with each other) resulting in that BP works best with carefully chosen parameters. In
such a highly connected graph structure, Node2Vec and LP fail to distinguish bad and good devices
as mentioned in Section 4.2. We thus focus on describing how the device-app graph structure
affects the behavior of BP.

Identifying the most effective ϵ values to accurately classify graph nodes using BP is a known
problem, and recent work aims to automate the process of identifying such values [72]. It has been
observed in previous work [30, 35] that the accuracy of BP is not significantly impacted by different
ϵ values, whereas our results are sensitive to ϵ (Figure 10(c)). In the following, we shed light on why
ϵ has an impact on our results, by providing in-depth analysis on distinctive network properties
of two bipartite graphs from different applications: Mobile and DNS. By doing so, we explain how
to choose the optimal parameters for DeviceWatch with BP to achieve the best accuracy.

Mobile represents the bipartite graph built from our dataset. Note that various vts do not have
a significant impact on the accuracy and topological locations of nodes in the ground truth. We
thus use the ground truth with vt = 5 to provide analysis in the following.

DNS represents the bipartite graph between domains and IPs built from the active DNS dataset
in [30]. In [30], Issa et al. applied BP on domain-hosting IP bipartite graph to detect malicious
domains. To compare the impact of ϵ in different networks, we obtained the domain-IP bipartite
graph and the ground truth labels on domains used in their work [30].

To clearly capture the sensitivity to ϵ in each of the two graphs (Mobile and DNS), we measure
the area under the ROC curve (AUC). Figure 15 shows AUC (the y-axis) with varying ϵ (the x-axis).
The figure clearly shows that ϵ has an obvious impact on AUC in Mobile, whereas AUC in DNS

stays almost the same (0.96) regardless of ϵ . We argue that this different behavior of BP is due to
the network structures and the topological locations of nodes in the ground truth.
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Fig. 16. Shortest path length matrix between bad/good and bad/good nodes.

For any two nodes S andT in the graph, their impact on each other depends on multiple variables,
the most important of which are: (1) the length of the path between S and T , (2) the number

of paths between S and T , and (3) the edge potential parameter.
First, the longer the path between S andT , the smaller S’s impact onT . This is because the edge

potential diminishes as it travels on the path between the two nodes (due to fraction multiplications
as many as the length of the path.) As a result, the final badness score will be insensitive to ϵ in
the case of graphs with longer paths. Second, the larger the number of paths between S andT , the
higher the impact of S on T . This is because the final score at T is a function of the product of
messages received on each path from S toT . For example, assume that a bad node S has p paths to
T , then S sends a bad messagemB (i ) and a good messagemG (i ) on a path i . Since S is bad,mB (i ) is
larger than mG (i ). The final bad (good) impact of S on T is a function of the product of the mB (i )
(mG (i )) messages from all the p paths. The larger the number of paths (p), the higher the difference
between the mB (i ) product and the mG (i ) product, and hence, the higher the final badness score
(due to the assumption that S is bad in the example). Finally, if we set ϵ = 1, the path length will
no longer have any impact, because length-1 has the same impact as length-1000; if we set ϵ close
to 0.5, bS ’s impact on bT greatly diminishes except for very short paths (e.g., 2).
We next compare two graphs (Mobile and DNS) in terms of their topological features that have an
impact on BP as explained earlier. Specifically, we are interested in nodes in the ground truth set.

Shortest path length. Consider two clusters: bad (CB ) and good (CG ). The important intuition
behind BP using the homophily relationship is that each cluster’s intra-cluster distance is low,
whereas inter-cluster distance between two clusters is high. We thus measure the intra-cluster
and inter-cluster distances in terms of the shortest path lengths between all pairs of nodes in CB

and CG .
Figure 16 shows the matrix representing the shortest path lengths between nodes inCB andCG .

The range of lengths is from 0 (black) to 20 (yellow). The figure shows a few important observations.
First, in both graphs, intra-cluster distances are smaller (darker and greener) than inter-cluster dis-
tances betweenCB andCG . Second,CB ’s intra-cluster distances are the lowest (darker and greener)
in both graphs. Finally, the difference between intra-cluster and inter-cluster distances in DNS is
much larger than that in Mobile .

Figure 17 presents the CDF (the y-axis) of shortest path lengths between nodes in CB and CG

(the x-axis); one line per dataset.
Interestingly, the difference ofCB ’s intra-cluster distances between Mobile and DNS is relatively

small. On the other hand, we observe different characteristics in CG ’s intra-cluster distances, and
inter-cluster distance betweenCB andCG for each dataset. In Mobile, 98.7% of path lengths between
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Fig. 17. Shortest path length CDF between bad/good and bad/good nodes.

Table 6. Network Properties of the Mobile and DNS Datasets

Mobile

CC

DNS CC Mobile

EC

DNS EC

Bad 0.229 0.088 0.03 0.005

Good 0.204 0.141 0.01 0.179

Unknown 0.212 0113 0.021 0.006

nodes inCG are smaller than or equal to 6, which is in fact similar to the inter-cluster distance be-
tween CB and CG where 99.8% of path lengths are smaller than or equal to 6. In DNS, 60% of path
lengths between nodes in CG are smaller than or equal to 6, while 90% of path lengths between
nodes inCB andCG are more than 6. In other words, although the intra-cluster distance is smaller
than the inter-cluster distance in both datasets (i.e., the homophily relationships hold), the differ-
ence between intra-cluster and inter-cluster distances in Mobile is relatively small, whereas the
difference is relatively large in DNS.

Observation 1. Relatively long inter-cluster distance diminishes the impact of bad (good) domains

on good (bad) domains, irrespective of ϵ in DNS; whereas ϵ plays a big role in classification accuracy

in Mobile, due to the small differences between intra-cluster and inter-cluster distances. Concretely,

bad devices have more impact on good ones when we use higher ϵ , resulting in higher false positives.

Hence, it is required to carefully choose ϵ close to 0.5 (e.g., 0.51) to avoid high false positives.

Closeness centrality. (CC) of a node measures the average length of the shortest paths from
the node to others [56]. Essentially, CC takes into account both factors: the number of paths and
the shortest path lengths. If all nodes in the graph are highly connected to each other with short
path lengths, the CCs of all nodes will be similar. Indeed, the average CCs of bad and good devices
in Mobile are similar; whereas, the average CC of bad domains is relatively small, compared to
those of good and unknown domains in DNS (Table 6).

Observation 2. Along with the Observation 1, we can conclude that the bad nodes in DNS are

much farther from other nodes and have less number of paths to other nodes, while good nodes

are highly connected to good or unknown nodes. This is expected as good domains are not likely to

have many connections to bad domains, but have many connections to good or unknown domains.

Hence, the classification accuracy is not sensitive to ϵ in DNS.

Eigenvector centrality. (EC) of a node measures its influence in the graph. A node with
high EC means that it is highly connected to other influential nodes. That is, messages are most
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Fig. 18. Eigenvector centrality distributions of the Mobile and DNS.

frequently passing through a node with high EC so that it will play a key role during BP process.
As shown in Table 6, there is a clear difference on ECs between Mobile and DNS graphs.

Observation 3. The average ECs of bad, good, and unknown devices are almost similar in Mobile.

This means that all nodes in the graph are highly connected with each other so that no significantly

influential nodes are in the graph. Note that the ECs of bad devices are the highest, meaning that as

the higher ϵ is used, the score of bad devices can dominate the network, resulting in high false positives.

On the other hand, the average EC of good domains is much higher than those of bad and unknown

domains in DNS.

Figure 18 shows the distribution of ECs of bad and good nodes in each dataset. Similar to results
from CC , Figure 18(b) shows that bad domains in DNS are significantly further from other nodes
and are not connected to influential nodes, meaning that there is a smaller number of paths to
other nodes. Although the ECs of good domains are high on average, they are well-distributed.
This is in fact expected, as there can be influential and non-influential domains.

By our definition in Mobile, bad devices can have edges with all types of apps (i.e., bad, good,
suspicious, and no-info apps); good devices can have edges with good and no-info apps. This
means that good devices could have a similar number of paths with both good and bad devices;
bad devices, however, have more paths with other bad devices than good devices. Consequently,
bad devices become relatively influential and connected to other influential bad devices, resulting
in the relatively high ECs as shown in Figure 18(a).

Observation 4. Bad devices are more influential on others than good devices in Mobile; whereas

bad domains are less influential on others in DNS. Along with the Observation 1, we can conclude that

bad devices get more influences from bad devices, especially from those influential bad devices, than

good devices; so that good devices’ messages have relatively less impact on bad devices. Consequently,

there is not much change on false negatives, irrespective of ϵ , as opposed to false positives.

Summary. In short, we show that bad devices are close to each other compared to good de-
vices in the device-app association graph (i.e., the homophily relationship holds), which makes us
successfully identify bad devices using the graph inference. On the other hand, we also show that
the graph structure of the device-app graph is unique in that the length of paths between good
and bad devices is relatively shorter and the number of paths between them is relatively larger,
compared to DNS graph. Considering these characteristics, we thus suggest choosing ϵ close to
0.5 (e.g., 0.51) to achieve the lower false positives with DeviceWatch.

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 9. Publication date: November 2022.



DeviceWatch: A Data-Driven Network Analysis Approach 9:23

5 POST ANALYSIS OF NEWLY DETECTED DEVICES

To further verify the correctness of the classification results in Section 4.3.1, we study how risky
the behavior of newly detected bad devices is, compared to good devices. Specifically, we compare
newly detected devices against good devices in terms of private information leakage (Section 5.1)
and underlying network infrastructure accessed by the devices (Section 5.2). To do so, we examine
samples of classified good and bad devices. Concretely, we sort unknown devices by their final
scores, and choose top-100 devices with high scores as bad and bottom-100 devices with low scores
as good.4

5.1 Leaking Private Information

Devices having bad apps are known to often leak private information [14, 34]. Note that non-bad
apps, and thus good devices having them, may also leak information [20, 50]. However, in the
following, we show that the behavior of bad devices is riskier than good devices in terms of leaked
information type and leakage traffic statistics.

Ethics. It is important to note that our research is conducted on an anonymized version of the
dataset where possible privacy concerns are carefully considered and addressed. Packet payloads
are encrypted in the traffic and HTTP headers for part of the traffic are available. Information in
HTTP headers is often in a structured format, i.e., a key-value pair [26, 49, 50]. Other than the
fields mentioned in Section 3.1 (i.e., those for identifying apps and devices), ISP securely replaced
all values (e.g., phone numbers, user names, device identifiers) appearing in the traffic with random
strings before they provide the data to authors. Hence, we could only know the key, not the values.
This anonymization process ensures that the authors could not link the traffic to any individual
user. To further secure the data, the anonymized dataset is kept in a dedicated server where only
one authorized author has access.

Privacy leaks often occur with a specific key-value pair [26, 49, 50]. For example, a login
password leaks with pwd=mypaSS123 where pwd is a key and mypaSS123 is a value. Note that
the key for a specific type of private information might be different depending on each app or
device [49, 50].

We have compiled a list of private information which often leaks in mobile networks based on
the previous research [20, 49, 50, 69]. As the leakage occurs only in the HTTP traffic, we inspect
HTTP packets originated from the device to analyze the privacy leakage. Then, from the dataset,
we heuristically extract highly-related keywords to each type of private information, examples of
which are summarized in Table 7. Note that we only present a few examples of keywords, as the
keywords are similar yet small variations such as imei1 and imei7. While the private information
might have been obfuscated in the traffic (e.g., hashing), it is also shown that most information
leakage occurs in plaintext in mobile networks [50]. We thus argue that the following results
represent the general behavior of each device.

We search the keywords in each device’s all of the HTTP headers, and consider a device leaks
its private information if a non-empty key-value string corresponding to given keywords is found
in any headers. These leaking packets may or may not include the app string. While we analyze all
leaking packets from a device, we further provide analysis on leaking packets having the identified
app. We consider an app as the leaking app if we can identify the app from the leaking traffic with
our approach in Section 3. For example, let us assume device1 has five packets as shown in Figure 19.
The device1 has four leaking packets and it has two leaking apps. We found 69 leaking apps on
200 devices including bad and good devices.

4Note that we choose scores derived from the results with parameters vt = 5 and ϵ = 0.51, based on the discussion in

Sections 4.3.1 and 4.4.
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Table 7. Example Keywords to Extract Private Information

Category Type Example Keywords

Sim card number iccid, simserialnumber, simno, simnumber, sim
Phone IMSI imsi, mobileimsi, user-imsi, imsi1, imsi_no, x-imsi, client-imsi

Phone number phone_num, phone, tel_num, mobile_no, cellphonenumber,
cellphone, userphone, tel_number, usrphonenum

User ID user_nick, user_id, user_name, userid, x-userid, log-user-id,
login_name, client-user-id

User Email user_email, email, login_email, email_name, contact_email,
acc_email

Birthday birthday, user_birth, customer_birthday, passenger_birthday
Gender gender, sex, client_gender

Credential Password userpwd, password, passwd, user_pwd, _password, pwd

Location Location longitude, latitude, lng_lat, coordinate, homeaddress, coords,
geo_location, gps_long, geoInfo

UDID udid, device_udid
Device ID devid, device_id, x-device-id, deviceid

Device IMEI imei, device-imei, phone-imei, imei1, mobileimei
Identifier GUID guid, phoneguid, dev-guid

UUID uuid, device_uuid, phoneuuid, x-device-uuid, uuid2
MAC user_mac, mac, mac_addr, _mac, x-macaddress
Android ID android_id, androidid, _androidid, androidid1

Fig. 19. Example traffic originated from a device.

Figure 20(a) presents the ratio of the number of devices (the y-axis) leaking each type of private
information (the x-axis). Generally, a large number of bad devices leak private information
compared to good devices. Notably, only bad devices leak highly sensitive information including
phone/sim card numbers, passwords, birthdays, email, and genders. Interestingly, some of the
good devices also leak private information.5 One reason might be that even non-bad apps,
particularly location-based searching apps, sometimes leak information such as location and
device identifiers in order to support their functionality [20, 50]. In fact, we observe that most of
the leaking apps on good devices are location-based searching apps.

To compare leaking on good and bad devices, we measure (i) the number of leaked private
information types, and (ii) the distribution of the number of leaking apps and packets. Figure 20(b)
shows the CDF (the y-axis) of the number of leaked private information type of devices (the x-axis).
As the figure shows, 73% of good devices do not leak any information and 10% of good devices leak

5Note that, as we select good devices with bottom-100 scores, it is less likely that these classified good devices include false

negatives.
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Fig. 20. Private information leakage.

Fig. 21. The distribution of leaking apps and packets of devices.

only one information type; whereas 77% of bad devices leak at least one information type and 10%
of bad devices leak more than five information types.

We further measure how many apps and packets of each device leak private information.
Figures 21(a) and 21(c) present the CDFs of the leaking app and the leaking traffic ratios,
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Table 8. The Number of Leaked Information Types in ISP Traffic, in Manually Captured Traffic,

and in Both Traffic

App ISP (only in the ISP

traffic)

The captured traffic (Only in the

captured traffic)

In both traffic

News app1 4 (1) 5 (2) 3

News app2 4 (1) 3 (0) 3

Book reading app 8 (3) 8 (3) 5

Game app 3 (1) 2 (0) 2

TV platform app 9 (3) 9 (3) 6

respectively. The x-axis in each figure represents the leaking app and leaking traffic ratios, re-
spectively; the y-axis represents the portion of devices.

The leaking app ratio is measured by the number of apps leaking information over the total
number of apps of each device; the leaking traffic ratio is measured by the number of packets
leaking information over the total number of packets of each device. As shown in the figures,
although some good devices also leak private information, the ratios of leaking apps and packets
of each device are relatively small. Specifically, we observe that among all the good devices that
leak private information (i.e., 27% of the good devices), 85% of them have less than 10% of leaking
apps (Figure 21(a)); the traffic of half of them has less than 20% of leaking packets (Figure 21(c)).

Figures 21(b) and 21(d) present the distribution of the number of leaking apps and packets of
devices, respectively. The x-axis represents each device; the y-axis in each figure represents the
corresponding number of leaking apps and packets of each device, respectively. Note that 73% of
good devices and 24% of bad devices do not leak any information so that their numbers of leaking
apps and packets are 0, which are not shown in the figures.

Interestingly, these leaking apps are not necessarily in the ground truth set of bad apps in Sec-
tion 3. In fact, 81% of these leaking apps (i.e., 56 out of 69 leaking apps) are not the apps originally
flagged by VT. In other words, the inference relies on a largely independent set of apps compared
to the ground truth to detect bad devices.

Recall that we do not have physical access to devices in the traffic, and thus we cannot perform
comprehensive measurements about other kinds of possible privacy leakage on each individual
device in the traffic. To justify our findings in this section, we employ an alternative approach. As
discussed in Section 3, we attempt to download app binaries by searching the app string from mul-
tiple app stores. However, some app strings are not searchable [39, 48], as mentioned in Section 3.1
and we only have two Android devices and no iOS devices for manual inspection. Out of 69 leaking
apps, we are able to find five app binaries to be installed in two devices mentioned in Section 3
for manual verification. We run these five apps on the two devices, capture the network traffic,
and perform the same analysis. Specifically, we search the keywords in Table 7 from the captured
traffic, check if there is privacy leakage in the traffic, and check if the corresponding type of in-
formation to the keywords is actually leaked. Then, we compared the difference in the number of
leaked information types between the ISP traffic of compromised devices and the captured traffic
in Table 8. By doing so, we indirectly show our leakage analysis based on keyword searching in
fact reflects the actual leakage. We observe that there is a large overlap between the ISP traffic and
the captured traffic (3rd column in Table 8). One possible reason for the difference between the set
of keywords is that we captured traffic on Android devices, but the ISP traffic includes iOS devices.
For example, “UDID” is iOS-specific device information revealed in the ISP traffic.

Assumption and Limitation in Leaking Information Analysis. Note that we are not able to
directly verify the leakage in each device due to our data limitation. We assume the non-empty

ACM Transactions on Privacy and Security, Vol. 26, No. 1, Article 9. Publication date: November 2022.



DeviceWatch: A Data-Driven Network Analysis Approach 9:27

Fig. 22. The CDFs of the number of ASes utilized and the number of short lived domains accessed.

string in matching keywords as leaked information, but it is also possible that the value is obfus-
cated. To have better confidence on our analysis and justify our findings, we perform case studies
as an alternative approach. We are able to find 5 out of 69 apps to manually verify our findings us-
ing the alternative approach. We thus do not claim that our analysis covers all possible scenarios of
leaking information. However, we argue that our analysis still suggests a clear difference between
detected bad devices and good devices to a certain extent in terms of leaking information.

Summary. In short, we show that although devices do not have bad apps from the ground truth,
classified bad devices are showing undesirable behavior in terms of privacy leakage. It is impor-
tant to note that highly sensitive information such as passwords is only leaked on bad devices.
This result is also promising in that we can possibly identify unknown bad apps by our approach.
Evidently, apps leaking highly sensitive information are not desirable and we may further analyze
apps causing privacy leakage on the classified bad device. Since our focus is to identify devices,
we leave further investigation on apps as future work.

5.2 Network Infrastructure Accessed

We analyze the domains and IPs accessed by classified devices. It is well-known that miscreants
utilize fast fluxing [25] to improve the availability of their malicious domains. Further, miscreants
move their domains from one hosting provider to another frequently to evade take down [30]. In
our dataset, 94% of hosting providers possess a single AS (Autonomous System). Thus, the above
observation on hosting providers can be generalized to ASes. We seek to find out if indeed this AS
behavior exists in the IPs accessed by the apps in the classified devices. Figure 22(a) shows the CDF
of the number of ASes that host domains accessed by classified good and bad devices. Consistent
with findings from previous research, it shows that bad devices tend to access IPs from more ASes
compared to good devices: 60% of bad devices access IPs from more than three ASes, whereas only
40% of good devices exhibit the same behavior during the study period. As it is economical to
create domains, nowadays, miscreants use many disposable domains to launch their attacks [65].
We thus also explore whether domains accessed by bad devices exhibit such behavior. First, for
the domains in the dataset, we extract the first seen and last seen dates of each domain from
Farsight passive DNS repository [22], which collects DNS queries resolved world-wide and serves
historical DNS query data since 2011. We define a short lived domain as one whose DNS footprint
is less than three months. Most of these domains are usually taken down, sink holed, or black listed,
if identified as malicious [4]. Figure 22(b) shows the CDF of the number of short lived domains
accessed by good and bad devices. The figure confirms with the previous research findings where,
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in general, classified bad devices access more short lived domains compared to good devices. It
shows that 60% of bad devices access more than three short lived domains, whereas nearly half of
good devices never access short lived domains during the study period.

6 DISCUSSION AND LIMITATIONS

Potential Evasion on Device and App Identification. Our approach may not cover all the
devices and apps in the traffic. One may use evasion techniques using NAT IPs, obfuscated app
strings, and VPNs. While in Section 3.1, we showed that those are not likely to be the case in our
traffic, our approach may encounter additional challenges when such obfuscated techniques are
prevalent. Note that identifying devices and apps from heterogeneous traffic is still in its early
stage in the literature [33, 57, 58, 61], and key assumptions for previous approaches do not apply
to our data in which multiple devices run multiple apps simultaneously. We leave the investigation
of this direction as future work.

Ground truth and VT intelligence. We establish ground truth by querying the app strings to VT
intelligence. An organization may build ground truth using alternative approaches (e.g., querying
domains of each certificate to VT, manually inspecting a small number of devices in the network,
and utilizing other public sources such as [1, 3]. We argue that the source of establishing ground
truth is independent of our approach. Our contribution is to identify unknown devices that may
have unknown bad apps by expanding the limited knowledge based on any accessible intelligence
source through graph inference. In fact, it is the key advantage of our approach: detection is based
solely on device-app association and we need neither deep inspection on devices and apps nor the
set of specific features such as device models or app types. As discussed in Section 5, although
our groundtruth is built by using VT, we show that detected devices show other types of risky
behavior such as leaking highly sensitive information (e.g., passwords) or accessing risky network
infrastructure. 81% of apps on such devices are not detected by VT.

Homophily Relationships: Device-App Association vs Device-IP Association. Essentially,
the key to the effectiveness of graph inference-based approaches is if the defined association in
fact has homophily properties. We empirically show that our proposed device-app association has
such a property, and thus we can successfully identify compromised devices by applying graph-
inference over the device-app association. We also show that bad devices are close to each other
compared to good devices in the device-app graph (Section 4.4). To further justify the homophily
property of device-app association, we compare with an alternative approach, i.e., using the
device-IP association. Intuitively, if a device is heavily communicating with a malicious destina-
tion IP, the device is compromised and it is likely to connect to other malicious IPs. However, a
single IP does not correctly represent a user’s general behavior, while most activities on mobile
devices incur through apps and the same IP may host multiple unrelated apps. Hence, if we use
device-IP association, it considers all devices communicating with the same IP as related, resulting
in many false associations leading to poor results (i.e., no homophily properties). Figure 23 shows
the ROC curve when using device-IP association based inference. The figure clearly shows that the
performance of the classification based on the device-IP association is not acceptable in practice
as it misclassifies a considerable number of devices.

Privacy Implication on Traffic Monitoring. While traffic monitoring at an ISP level can provide
a more centralized and efficient way to guarantee security, it may open the door for censorship,
user profiling, and user tracking. However, we want to emphasize that our goal is not to pinpoint
the exact app of each device, yet to identify compromised devices. When DeviceWatch is deployed
at the ISP level, privacy concerns should be carefully considered. Additional studies are required
to address the possible privacy implications, we leave as a future direction. We describe some
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Fig. 23. ROC curve with device-IP association based inference (vt = 2, ϵ = 0.51, Np = 1000).

recommendations to prevent privacy issues. First, the network administrator needs to carefully
consider privacy implications. For example, all app names excluding malicious ones should be
replaced with pseudo app names so that sensitive information cannot be revealed from the usage
of apps (e.g., medical apps). In Section 3.1, we propose to use traffic similarity measure τsim to
control the trade-off between the accuracy of app identification and the coverage of apps. This
parameter can also be used to control the trade-off between the accuracy of app identification
and privacy. For a better privacy guarantee, ISP may choose to use low τsim (e.g., 0.5) while still
ensuring confidence in app identification. App developers should obey privacy guidelines, properly
encrypt their traffic, and obfuscate traffics to prevent posing any threats to user privacy. Users also
need to be aware of potential privacy threats and consider extra security measures such as using
VPNs.

7 CONCLUSION

We proposed a data-driven network analysis approach with graph-inference to identify compro-
mised mobile devices. In doing so, we define a device-app association based on the intuition that
devices sharing a similar set of apps will have a similar probability of being compromised (i.e.,
homophily relationships). We studied this problem on real-world data that faithfully represents
the actual behavior of mobile users with which we demonstrate the effectiveness of our approach.
We empirically show that homophily relationships exist by showing that bad devices are close to
each other in the device-app graph and we can thus successfully identify compromised devices
using the graph-inference over the device-app association. We further study the impact of graph
topology on BP parameters and highlight the distinct features of the mobile graph. Finally, our pri-
vacy leakage and hosting infrastructure analyses support the claim that our approach can reliably
detect unknown compromised devices without relying on device-specific features. It is also im-
portant to take appropriate actions after compromised devices are detected. We also discuss that
further investigation on detected devices might be helpful to identify unknown malicious apps,
which we leave as future work.
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